Math 102 Homework Assignment 5 Due Thursday, February 17, 2022

1. Determine the
$$QR$$
 factorization of $A = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 1 & 1 & 1 \\ 0 & 1 & 1 \end{pmatrix}$.

- 2. Let U be a m-dimensional subspace of \mathbb{R}^n and let V be a k-dimensional subspace of U, where 0 < k < m.
 - (a) Show that any orthonormal basis $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k\}$ for V can be extended to form an orthonormal basis $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k, \mathbf{v}_{k+1}, \dots, \mathbf{v}_m\}$ for U.
 - (b) Show that if $W = \text{Span}(\mathbf{v}_{k+1}, \dots, \mathbf{v}_m)$, then $U = V \oplus W$.
- 3. Let Q be an orthogonal matrix.
 - (a) Show that if λ is an eigenvalue of Q, then $|\lambda| = 1$.
 - (b) Show that $|\det(Q)| = 1$.
- 4. Let λ_1 and λ_2 be distinct eigenvalues of A. Let \mathbf{x} be an eigenvector of A belonging to λ_1 and let \mathbf{y} be an eigenvector of A^T belonging to λ_2 . Show that $\mathbf{x} \perp \mathbf{y}$.
- 5. Let A and B be $n \times n$ matrices. Show that:
 - (a) If λ is a nonzero eigenvalue of AB, then it is also an eigenvalue of BA.
 - (b) If $\lambda = 0$ is an eigenvalue of AB, then $\lambda = 0$ is also an eigenvalue of BA.
- 6. Solve each of the following initial value problems:

(a)

$$y'_1 = -y_1 + 2y_2$$
 $y_1(0) = 3$
 $y'_2 = 2y_1 - y_2$ $y_2(0) = 1$

(b)

$$y'_1 = y_1 - 2y_2$$
 $y_1(0) = 1$
 $y'_2 = 2y_1 + y_2$ $y_2(0) = -2$

(page 2 of 2)

7. Given

$$\mathbf{Y} = c_1 e^{\lambda_1 t} \mathbf{x}_1 + c_2 e^{\lambda_2 t} \mathbf{x}_2 + \dots + c_n e^{\lambda_n t} \mathbf{x}_n$$

is the solution to the initial value problem

$$\mathbf{Y}' = A\mathbf{Y}, \qquad \mathbf{Y}(0) = \mathbf{Y}_0.$$

- (a) Show that $\mathbf{Y}_0 = c_1 \mathbf{x}_1 + c_2 \mathbf{x}_2 \cdots + c_n \mathbf{x}_n$.
- (b) Let $X = \begin{pmatrix} \mathbf{x}_1 & \mathbf{x}_2 & \cdots & \mathbf{x}_n \end{pmatrix}$ and $\mathbf{c} = \begin{pmatrix} c_1 \\ c_2 \\ \vdots \\ c_n \end{pmatrix}$.

Given that the vectors $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n$ are linearly independent, show that $\mathbf{c} = X^{-1}\mathbf{Y}_0$.

- 8. (a) Transform the n^{th} -order equation $y^{(n)} = a_0 y + a_1 y' + \dots + a_{n-1} y^{(n-1)}$ into a system of first-order equations by setting $y_1 = y$ and $y_{k+1} = y'_k$ $k = 1, \dots, n-1$.
 - (b) Determine the characteristic polynomial of the coefficient matrix of this system.