Math 102 Homework Assignment 6 Due Thursday, March 3, 2022

- 1. Let A be a $n \times n$ matrix with real entries and let $\lambda_1 = a + bi$ (where a and b are real and $b \neq 0$) be an eigenvalue of A. Let $\mathbf{z}_1 = \mathbf{x} + i\mathbf{y}$ (where \mathbf{x} and \mathbf{y} both have real entries) be an eigenvector of A corresponding to λ_1 , and let $\mathbf{z}_2 = \mathbf{x} i\mathbf{y}$.
 - (a) Explain why \mathbf{z}_1 and \mathbf{z}_2 must be linearly independent.
 - (b) Show that $y \neq 0$ and that x and y are linearly independent.
- 2. Let \mathbf{x} , \mathbf{y} be nonzero vectors in \mathbb{R}^n with $n \geq 2$, and let $A = \mathbf{x}\mathbf{y}^T$. Show that
 - (a) $\lambda = 0$ is an eigenvalue of A with n-1 linearly independent eigenvectors and, consequently, has multiplicity at least n-1.
 - (b) the remaining eigenvalue of A is

$$\lambda_n = \operatorname{tr}(A) = \mathbf{x}^T \mathbf{y},$$

and \mathbf{x} is an eigenvector corresponding to λ_n .

- (c) if $\lambda_n = \mathbf{x}^T \mathbf{y} \neq 0$, then A is diagonalizable.
- 3. Show that e^A is nonsingular for every $n \times n$ matrix A. [Hint: Use the definition of e^{tA} as the solution to a matrix initial value problem.]
- 4. Let A be a $n \times n$ Hermitian matrix and let **x** be a vector in \mathbb{C}^n . Show that $\mathbf{x}^H A \mathbf{x}$ is real.
- 5. Let U be a unitary matrix. Prove that
 - (a) U is normal.
 - (b) $||U\mathbf{x}|| = ||\mathbf{x}||$ for all $\mathbf{x} \in \mathbb{C}^n$.
 - (c) if λ is an eigenvalue of U, then $|\lambda| = 1$.
- 6. Let A be a Hermitian matrix with eigenvalues $\lambda_1, \ldots, \lambda_n$ and orthonormal eigenvectors $\mathbf{u}_1, \ldots, \mathbf{u}_n$. Show that

$$A = \lambda_1 \mathbf{u}_1 \mathbf{u}_1^H + \lambda_2 \mathbf{u}_2 \mathbf{u}_2^H + \dots + \lambda_n \mathbf{u}_n \mathbf{u}_n^H.$$