1. **Exercise A1:** Using the orthonormal basis (found in Exercise 5.6.4) for the subspace spanned by \(\{1, x, x^2\} \) in the vector space of polynomials with inner product \(\langle f, g \rangle = \int_{-1}^{1} f(t)g(t) \, dt \), find the quadratic polynomial that best approximates \(f(x) = \cos(x) \) on \([-1, 1]\).

2. **Exercise A2:** Find a QR factorization for the matrix
\[
A = \begin{pmatrix}
-2 & 3 \\ 5 & 7 \\ 2 & -2 \\ 4 & 6
\end{pmatrix}.
\]

3. **Exercise A3:** Suppose that \(A = QR \), where \(Q \) is a \(m \times n \) matrix and \(R \) is a \(n \times n \) matrix. Show that if the columns of \(A \) are linearly independent, then \(R \) is invertible. (Note: \(Q \) is not assumed to be an orthogonal matrix.)

4. **Exercise A4:** Suppose that \(A = QR \), where \(R \) is an invertible matrix. Show that \(A \) and \(Q \) have the same column space.

5. **Exercise A5:** Given \(\{u_1, \ldots, u_p\} \) an orthogonal basis for a subspace \(W \) of \(\mathbb{R}^n \).

 Let \(T : \mathbb{R}^n \to \mathbb{R}^n \) be defined by \(T(x) = \text{proj}_W x \), the projection of \(x \) onto the subspace \(W \).

 (a) Verify that \(T \) is a linear transformation.

 (b) What is \(\ker(T) \), the kernel of \(T \)?

 (c) What is \(T(\mathbb{R}^n) \), the range of \(T \)?