Question 1 \(f(z) \) is analytic at \(\infty \) if

A. there is \(\rho > 0 \) for which \(f(z) = \sum_{k=0}^{\infty} \frac{b_k}{z^k} \) for all \(|z| > \rho \).

B. \(g(w) = f \left(\frac{1}{w} \right) \) is analytic at \(w = 0 \).

C. there is \(\sigma > 0 \) for which \(f(z) = \sum_{k=0}^{\infty} a_k z^k \) for all \(|z| < \sigma \).

D. A and B.

E. B and C.
Question 2 Given \(f(z) = \sum_{k=-\infty}^{\infty} b_k z^k \) for all \(|z| > R \). \(f(z) \) has a removable singularity at \(\infty \) if

A. \(b_k = 0 \) for all integers \(k > 0 \).

B. the principle part of \(f(z) \) vanishes at \(\infty \).

C. there is an integer \(N \geq 1 \) for which \(b_N \neq 0 \) but \(b_k = 0 \) for all integers \(k > N \).

D. \(b_k \neq 0 \) for infinitely many integers \(k > 0 \).

E. none of the above; you can’t remove singularities, especially at \(\infty \).
Question 3 Given \(f(z) = \sum_{k=-\infty}^{\infty} b_k z^k \) for all \(|z| > R \). \(f(z) \) has an essential singularity at \(\infty \) if

A. \(b_k = 0 \) for all integers \(k > 0 \).

B. the principle part of \(f(z) \) vanishes at \(\infty \).

C. there is an integer \(N \geq 1 \) for which \(b_N \neq 0 \) but \(b_k = 0 \) for all integers \(k > N \).

*D. \(b_k \neq 0 \) for infinitely many integers \(k > 0 \).

E. none of the above; singularities aren’t essential, you can get by perfectly well without them.
Question 4 Given $f(z) = \sum_{k=-\infty}^{\infty} b_k z^k$ for all $|z| > R$. $f(z)$ has a pole of order N at ∞ if

A. $b_k = 0$ for all integers $k > 0$.

B. the principle part of $f(z)$ vanishes at ∞.

*C. there is an integer $N \geq 1$ for which $b_N \neq 0$ but $b_k = 0$ for all integers $k > N$.

D. $b_k \neq 0$ for infinitely many integers $k > 0$.

E. none of the above; poles are simple objects and don’t need to be ordered by N.
Question 5 Given that \(f(z) \) has a pole of order \(N \) at \(z_0 \). Then,

A. \(f^{(k)}(z_0) = 0 \) for integers \(k, 0 \leq k < N \) and \(f^{(N)}(z_0) \neq 0 \).

B. \(h(z) = (z - z_0)^N f(z) \) is analytic at \(z_0 \) and \(h(z_0) \neq 0 \).

C. \(f(z) \) has a Laurent series \(\sum_{m=1}^{N} \frac{b_m}{(z - z_0)^m} + \sum_{n=0}^{\infty} a_n(z - z_0)^n \).

D. A and B.

*E. B and C.