Question 1 Given \(f(z) = \sum_{k=-\infty}^{\infty} b_k z^k \) for all \(|z| > R\). \(f(z) \) has a removable singularity at \(\infty \) if

*A. \(b_k = 0 \) for all integers \(k > 0 \).

B. the principle part of \(f(z) \) vanishes at \(\infty \).

C. there is an integer \(N \geq 1 \) for which \(b_N \neq 0 \) but \(b_k = 0 \) for all integers \(k > N \).

D. \(b_k \neq 0 \) for infinitely many integers \(k > 0 \).

E. none of the above; you can’t remove singularities, especially at \(\infty \).
Question 2 A function $f(z)$ has a nonzero residue at z_0 if

A. z_0 is an isolated singularity of $f(z)$

B. the principal part of $f(z)$ is not zero.

*C. z_0 is the only singularity of $f(z)$ in $|z - z_0| < \rho$ and
\[
\int_{|\zeta - z_0| = \epsilon} f(\zeta) \, d\zeta \neq 0 \text{ for every } 0 < \epsilon < \rho.
\]

D. all of the above.

E. none of the above.
Question 3 Suppose $f(z)$ has an essential singularity at z_0. Then,

A. Res $[f(z), z_0]$, the residue of $f(z)$ at z_0, is undefined.

B. $\int_{|\zeta - z_0| = \epsilon} f(\zeta) \, d\zeta$ is not defined for any $\epsilon > 0$.

C. $f(z)$ is not analytic at ∞.

D. all of the above.

*E. none of the above.
Question 4 Let \(f(z) = \frac{1}{(z - z_0)^2} \). Then,

A. \(\int_{|\zeta - z_0| = \epsilon} f(\zeta) \, d\zeta = 0 \) for every \(\epsilon > 0 \).

B. \(\int_{|\zeta - z_0| = \epsilon} f(\zeta) \, d\zeta = 2\pi i \) for every \(\epsilon > 0 \).

C. \(\text{Res}[f(z), z_0] = 0 \).

* D. A and C.

E. none of the above.
Question 5 Let \(f(z) = \frac{1}{(z - z_0)} \). Then,

A. \(\int_{|\zeta - z_0| = \epsilon} f(\zeta) \, d\zeta = 0 \) for every \(\epsilon > 0 \).

*B. \(\int_{|\zeta - z_0| = \epsilon} f(\zeta) \, d\zeta = 2\pi i \) for every \(\epsilon > 0 \).

C. \(\text{Res}[f(z), z_0] = 0 \).

D. A and C.

E. none of the above.