Question 1 The function \(f(z) = \frac{1}{z^2 - z} = -\frac{1}{z} \cdot \frac{1}{1-z} \) can be decomposed as

A. \(f(z) = f_0(z) + f_1(z) \) with \(f_0(z) \) analytic for \(|z| < 1 \) and \(f_1(z) \) analytic for \(|z| > 0 \) and vanishes at \(\infty \).

B. \(f(z) = -\frac{1}{z} - \sum_{k=0}^{\infty} z^k \).

C. A and B; \(f_0(z) = -\sum_{k=0}^{\infty} z^k \) and \(f_1(z) = -\frac{1}{z} \).

D. All of the above; this is an example of a Laurent decomposition analytic for \(0 < |z| < 1 \).

E. None of the above. I don’t even know who Laurent was ...
Question 2 We can also write $f(z) = \frac{1}{z^2 - z} = \frac{1}{z^2} \cdot \frac{1}{1 - \left(\frac{1}{z}\right)}$. Thus,

A. $f(z) = \sum_{k=2}^{\infty} \frac{1}{z^k}$ for $|z| > 1$.

B. $f(z) = f_0(z) + f_1(z)$, where $f_0(z)$ is analytic for $|z| < +\infty$ and $f_1(z)$ is analytic for $|z| > 1$ and vanishes at ∞.

C. A and B and $f_0(z)$ is identically zero.

*D. All of the above; this is an example of a Laurent decomposition analytic for $|z| > 1$.

E. None of the above. Did Laurent ever meet Cauchy?
Question 3 Let \(A \) be the annulus \(\rho < |z - z_0| < \sigma \) with boundary \(\partial A = \{|z - z_0| = \sigma\} \cup \{|z - z_0| = \rho\} \). If \(f(z) \) is analytic on \(A \) and extends smoothly to \(\partial A \), then for all \(z \in A \):

A. \(f(z) = \frac{1}{2\pi i} \int_{\partial A} \frac{f(\zeta)}{\zeta - z} \, d\zeta \), traversing \(\partial A \) along its positive orientation.

B. The positive orientation of \(\partial A \) is *counterclockwise* along the outer circle \(\{|z - z_0| = \sigma\} \) and *clockwise* along the inner circle \(\{|z - z_0| = \rho\} \)

C. \(f(z) = \frac{1}{2\pi i} \int_{|z-z_0|=\sigma} \frac{f(\zeta)}{\zeta - z} \, d\zeta - \frac{1}{2\pi i} \int_{|z-z_0|=\rho} \frac{f(\zeta)}{\zeta - z} \, d\zeta \), traversing both circles in *counterclockwise* orientation.

D. All of the above; the result is called Cauchy’s integral formula for an annulus.

E. None of the above; not much can be done on an annulus.
The function $f(z) = \frac{1}{z} + \frac{1}{z^5} = \frac{z^4 + 1}{z^5}$. We can conclude

A. $f(z)$ has four simple zeros: $z \in \left\{ e^{i \frac{\pi}{4}}, e^{i \frac{3\pi}{4}}, e^{i \frac{5\pi}{4}}, e^{i \frac{7\pi}{4}} \right\}$.

B. $f(z)$ has a zero of order 5 at ∞.

C. $\frac{1}{z} + \frac{1}{z^5}$ is the Laurent series of f for $|z| > 0$.

D. A and B.

*E. A and C.
Question 5 Suppose \(\sum_{k=0}^{\infty} a_k(z - (1 + i))^2 \) is the power series for \(f(z) = \frac{1}{1 + z^2} \) centered at \(1 + i \). It’s radius of convergence is

* A. 1.

B. \(\sqrt{5} \).

C. \(R = \infty \) since \(f(z) \) is defined for all \(z \).

D. \(R = 0 \) since the power series converges only at \(1 + i \).

E. None of the above.