Math 142A Homework Assignment 1

Due 11:00pm Thursday, January 18, 2024

1. (a) Show $|b| \leq a$ if and only if $-a \leq b \leq a$.
(b) Prove $||a|-|b|| \leq|a-b|$ for all $a, b \in \mathbb{R}$.
2. (a) Prove that $|a+b+c| \leq|a|+|b|+|c|$.
(b) Use induction to prove that $\left|a_{1}+a_{2}+\cdots+a_{n}\right| \leq\left|a_{1}\right|+\left|a_{2}\right|+\cdots+\left|a_{n}\right|$ for any n numbers $a_{1}, a_{2}, \ldots, a_{n}$.
3. Let $a, b \in \mathbb{R}$. Show that if $a<b_{1}$ for every $b_{1}>b$, then $a \leq b$.
4. Prove that if $a>0$, then there exists $n \in \mathbb{N}$ such that $\frac{1}{n}<a<n$.
5. Let S and T be bounded subsets of \mathbb{R}.
(a) Prove that if $S \subseteq T$, then $\inf (T) \leq \inf (S) \leq \sup (S) \leq \sup (T)$.
(b) Prove that $\sup (S \cup T)=\max \{\sup (S), \sup (T)\}$. Note: Be sure that you don't assume that $S \subseteq T$.
6. Let \mathbb{I} be set of real numbers that are not rational; that is, $\mathbb{I}=\mathbb{R} \backslash \mathbb{Q}$. The elements of \mathbb{I} are called irrational numbers. Prove that if $a<b$, then there exists $x \in \mathbb{I}$ with $a<x<b$.
7. Prove that the following statements are equivalent:
(a) $|a-b|<c$,
(b) $b-c<a<b+c$,
(c) $a \in(b-c, b+c)$.
8. Let $a, b \in \mathbb{R}$. Show that if $a \leq b+\frac{1}{n}$ for all $n \in \mathbb{N}$, then $a \leq b$.
9. Let A and B be nonempty bounded subsets of \mathbb{R}, and let $A+B$ be the set of all sums $a+b$ with $a \in A$ and $b \in B$; that is, $A+B=\{a+b \mid a \in A$ and $b \in B\}$.
(a) Prove that $\sup (A+B)=\sup (A)+\sup (B)$.
(b) Prove that $\inf (A+B)=\inf (A)+\inf (B)$.
10. Exhibit an example of:
(a) a sequence $\left(x_{n}\right)$ of irrational numbers having a limit which is a rational number; that is, $\left(x_{n}\right) \subset \mathbb{I}$ with $\lim _{n \rightarrow \infty} x_{n}=r \in \mathbb{Q}$.
(b) a sequence $\left(r_{n}\right)$ of rational numbers having a limit which is a irrational number; that is, $\left(r_{n}\right) \subset \mathbb{Q}$ with $\lim _{n \rightarrow \infty} r_{n}=x \in \mathbb{I}$.
