Math 142A Homework Assignment 1 Due 11:00pm Thursday, January 18, 2024

- 1. (a) Show $|b| \le a$ if and only if $-a \le b \le a$. (b) Prove $||a| - |b|| \le |a - b|$ for all $a, b \in \mathbb{R}$.
- 2. (a) Prove that $|a+b+c| \le |a|+|b|+|c|$.
 - (b) Use induction to prove that $|a_1 + a_2 + \dots + a_n| \le |a_1| + |a_2| + \dots + |a_n|$ for any *n* numbers a_1, a_2, \dots, a_n .
- 3. Let $a, b \in \mathbb{R}$. Show that if $a < b_1$ for every $b_1 > b$, then $a \leq b$.
- 4. Prove that if a > 0, then there exists $n \in \mathbb{N}$ such that $\frac{1}{n} < a < n$.
- 5. Let S and T be bounded subsets of \mathbb{R} .
 - (a) Prove that if $S \subseteq T$, then $\inf(T) \le \inf(S) \le \sup(S) \le \sup(T)$.
 - (b) Prove that $\sup(S \cup T) = \max\{\sup(S), \sup(T)\}$. Note: Be sure that you don't assume that $S \subseteq T$.
- 6. Let \mathbb{I} be set of real numbers that are not rational; that is, $\mathbb{I} = \mathbb{R} \setminus \mathbb{Q}$. The elements of \mathbb{I} are called *irrational numbers*. Prove that if a < b, then there exists $x \in \mathbb{I}$ with a < x < b.
- 7. Prove that the following statements are equivalent:
 - (a) |a b| < c,
 - (b) b c < a < b + c,
 - (c) $a \in (b c, b + c)$.
- 8. Let $a, b \in \mathbb{R}$. Show that if $a \leq b + \frac{1}{n}$ for all $n \in \mathbb{N}$, then $a \leq b$.
- 9. Let A and B be nonempty bounded subsets of \mathbb{R} , and let A + B be the set of all sums a + b with $a \in A$ and $b \in B$; that is, $A + B = \{a + b \mid a \in A \text{ and } b \in B\}$.
 - (a) Prove that $\sup(A + B) = \sup(A) + \sup(B)$.
 - (b) Prove that $\inf(A+B) = \inf(A) + \inf(B)$.
- 10. Exhibit an example of:
 - (a) a sequence (x_n) of irrational numbers having a limit which is a rational number; that is, $(x_n) \subset \mathbb{I}$ with $\lim_{n \to \infty} x_n = r \in \mathbb{Q}$.
 - (b) a sequence (r_n) of rational numbers having a limit which is a irrational number; that is, $(r_n) \subset \mathbb{Q}$ with $\lim_{n \to \infty} r_n = x \in \mathbb{I}$.