1. Let \(f : \mathbb{R} \to \mathbb{R} \) be continuous at \(x_0 \) with \(f(x_0) > 0 \). Prove that there is a natural number \(n \) for which \(f(x) > 0 \) for all \(x \) in the interval \(I := (x_0 - 1/n, x_0 + 1/n) \).

2. A function \(f : D \to \mathbb{R} \) is said to be a Lipschitz function if there is a \(C \geq 0 \) such that \(|f(u) - f(v)| \leq C |u - v|\) for all \(u, v \) in \(D \). Prove that a Lipschitz function is continuous.

3. Let \(f : \mathbb{R} \to \mathbb{R} \) have the property that \(f(u + v) = f(u) + f(v) \) for all \(u \) and \(v \).

 (a) Let \(m := f(1) \). Prove that \(f(x) = mx \) for all rational numbers \(x \).

 (b) Prove that if \(f \) is continuous, then \(f(x) = mx \) for all \(x \).

4. Let \(S \) be a nonempty set of real numbers that is not sequentially compact. Prove that there is an unbounded sequence in \(S \) or there is a sequence in \(S \) that converges to a point \(x_0 \) which is not in \(S \).

5. Let \(f : [0,1] \to \mathbb{R} \) be continuous with \(f(0) > 0 \) and \(f(1) = 0 \). Prove that there is an \(x_0 \) in \((0,1) \) such that \(f(x_0) = 0 \) and \(f(x) > 0 \) for all \(x \) in \([0,x_0)\); that is, there is a smallest point in the interval \([0,1]\) at which \(f \) attains the value 0.

6. Let \(f : \mathbb{R} \to \mathbb{R} \) be a continuous function whose image \(f(\mathbb{R}) \) is bounded. Prove that there is a solution to the equation \(f(x) = x \).

7. Let \(f : [a,b] \to \mathbb{R} \) be continuous. Given a natural number \(k \), let \(x_1, \ldots, x_k \) be points in \([a,b]\). Prove that there is a point \(z \) in \([a,b]\) at which

 \[
 f(z) = \frac{f(x_1) + \cdots + f(x_k)}{k}.
 \]

 [Note: As \(k \to \infty \), this becomes the mean value theorem for integrals (Theorem 6.26).]

8. Given \(f : [0,1] \to \mathbb{R} \) continuous such that \(f([0,1]) \subseteq \mathbb{Q} \). Show that \(f \) is a constant function.

9. Let \(f : D \to \mathbb{R} \) and \(g : D \to \mathbb{R} \) be uniformly continuous functions. Define the product function \(fg : D \to \mathbb{R} \) by \((fg)(x) := f(x)g(x)\).

 (a) Show that \(fg \) need not be uniformly continuous.

 (b) Prove that if \(f \) and \(g \) are also bounded, then \(fg \) is uniformly continuous.

 Hint: Write \(f(u)g(u) - f(v)g(v) = f(u)[g(u) - g(v)] + g(v)[f(u) - f(v)] \).

10. A function \(f : D \to \mathbb{R} \) is called a Lipschitz function if there is a \(C \geq 0 \) such that \(|f(u) - f(v)| \leq C |u - v|\) for all \(u, v \in D \). Prove that if \(f \) is a Lipschitz function, then \(f \) is uniformly continuous.