1. Let \(f : \mathbb{R} \to \mathbb{R} \) be a function with a second derivative and that satisfies

\[
\begin{align*}
 f''(x) + f(x) &= e^{-x} \quad \text{for all } x, \\
 f(0) &= 0 \quad \text{and} \quad f'(0) = 2.
\end{align*}
\]

Find the fourth Taylor polynomial for \(f : \mathbb{R} \to \mathbb{R} \) at \(x = 0 \).

2. Suppose that \(f : \mathbb{R} \to \mathbb{R} \) has three derivatives and that the third Taylor polynomial for \(f \) at \(x = 0 \) is \(p_3(x) = 1 + 4x - x^2 + \frac{1}{6}x^3 \).

Show that there is a neighborhood \(I \) of 0 such that \(f : I \to \mathbb{R} \) is (1) positive, (2) strictly increasing, and (3) has a strictly decreasing derivative.

3. Prove that \(1 + \frac{1}{2}x - \frac{1}{8}x^2 < \sqrt{1 + x} < 1 + \frac{1}{2}x \) for all \(x > 0 \).

4. Prove that \(1 + \frac{1}{3}x - \frac{1}{9}x^2 < (1 + x)^{\frac{1}{3}} < 1 + \frac{1}{3}x \) for all \(x > 0 \).

5. Write the polynomial \(p(x) = x^5 - x^3 + x \) in the form \(p(x) = \sum_{k=0}^{5} a_k (x-1)^k \).

6. Prove that \(|\sin(x+h) - \sin(x) - h \cos(x)| \leq \frac{1}{2}h^2 \) for every pair of numbers \(x \) and \(h \).

7. Use the fact that the \(n \)th Taylor polynomial at \(x = x_0 \) for a polynomial \(p \) of degree at most \(n \) is itself [that is, \(p_n(x) = p(x) \)] to show that if the point \(x_0 \) is a zero of a polynomial \(p \) [that is, \(p(x_0) = 0 \)], then there is a polynomial \(q \) such that \(p(x) = (x-x_0)q(x) \) for all \(x \).

8. A number \(x_0 \) is said to be a zero of order \(k \) of a polynomial \(p \) provided that \(k \) is a natural number such that \(p(x) = (x-x_0)^k r(x) \), where \(r(x) \) is a polynomial with \(r(x_0) \neq 0 \). Prove that \(x_0 \) is a zero of order \(k \) of a polynomial \(p \) if and only if

\[
p(x_0) = p'(x_0) = \cdots = p^{(k-1)}(x_0) = 0 \quad \text{and} \quad p^{(k)}(x_0) \neq 0.
\]

9. Let \(f : \mathbb{R} \to \mathbb{R} \) and \(g : \mathbb{R} \to \mathbb{R} \) both be functions with \(n + 1 \) continuous derivatives. Prove that \(f \) and \(g \) have contact of order \(n \) at \(x = 0 \) if and only if \(\lim_{x \to 0} \frac{f(x) - g(x)}{x^n} = 0 \).

10. Let \(I \) be a neighborhood of the point \(x_0 \) and let \(f : I \to \mathbb{R} \) be a function with a positive continuous third derivative \(f'''(x) > 0 \) for all \(x \in I \).

(a) Prove that if \(x_0 + h \neq x_0 \) is in \(I \), there is a unique number \(\theta = \theta(h) \in (0, 1) \) for which

\[
f(x_0 + h) = f(x_0) + f'(x_0)h + f''(x_0)\frac{h^2}{2} + f'''(x_0 + \theta h)\frac{h^3}{6}.
\]

(b) Prove that \(\lim_{h \to 0} \theta(h) = \frac{1}{3} \).