\qquad
\qquad

Instructions

1. Write your Name and PID in the spaces provided above.
2. Make sure your Name is on every page.
3. No calculators, tablets, phones, or other electronic devices are allowed during this exam.
4. You may use one handwritten page of notes, but no books or other assistance during this exam.
5. Read each question carefully and answer each question completely.
6. Write your solutions clearly in the spaces provided.
7. Show all of your work. No credit will be given for unsupported answers, even if correct.
(1 point) 0. Carefully read and complete the instructions at the top of this exam sheet and any additional instructions written on the chalkboard during the exam.
(6 points) 1. Consider the matrix $A=\left[\begin{array}{cccc}2 & 3 & 0 & 5 \\ 0 & 1 & 4 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 6\end{array}\right]$.
(a) Calculate the third column of A^{-1}.
(b) Let $B=\frac{1}{2} A A^{\top}$. Calculate $\operatorname{det}\left(B^{-1}\right)$.
(9 points) 2.
The matrix $A=\left[\begin{array}{ccccc}1 & 2 & 0 & 2 & 2 \\ 2 & 4 & 1 & 9 & 3 \\ 1 & 2 & -1 & -3 & 3\end{array}\right]$ has reduced row-echelon form $\left[\begin{array}{ccccc}1 & 2 & 0 & 2 & 2 \\ 0 & 0 & 1 & 5 & -1 \\ 0 & 0 & 0 & 0 & 0\end{array}\right]$.
(a) Find a basis for $\operatorname{Nul}(A)$.
(b) Find a basis for $\operatorname{Col}(A)$.
(c) Find a basis for $\operatorname{Col}\left(A^{\top}\right)$.
\qquad
(8 points) 3. In each of the following examples, a vector space V is given, along with a subset S. Determine whether S is a subspace or not. In each case, explain why it is or is not a subspace.
(a) $V=M_{4 \times 5}$ is the space of 4×5 matrices, and S is the set of 4×5 matrices with rank 1 .
(b) $V=M_{1 \times 3}$ is the space of 3 -dimensional row vectors, and $S=\operatorname{span}\{[1,1,1],[-2,2,3]\}$.
(c) $V=\mathbb{R}^{2}$, and $S=\left\{\left[\begin{array}{c}t \\ 3 t\end{array}\right]: 0 \leq t \leq 2\right\}$.
(d) $V=\mathbb{P}_{2}$ is the space of polynomials of degree ≤ 2, and S is the subset of polynomials p in V for which $p(1)=0$.

v. 1 (page 4 of 4)

Name:

\qquad
(6 points) 4. Let $H=\left\{\left[\begin{array}{c}s+2 t \\ 2 s-t \\ t\end{array}\right]: s, t \in \mathbb{R}\right\} . H$ is a subspace of \mathbb{R}^{3}, with basis $\mathcal{B}=\left\{\left[\begin{array}{l}1 \\ 2 \\ 0\end{array}\right],\left[\begin{array}{c}2 \\ -1 \\ 1\end{array}\right]\right\}$.
(a) The vector $\mathbf{v}=\left[\begin{array}{c}2 \\ 9 \\ -1\end{array}\right]$ is in H. Find its coordinate vector $[\mathbf{v}]_{\mathcal{B}}$.
(b) Let \mathbf{u} be the sum of the two basis vectors in \mathcal{B}. Is $\{\mathbf{u}, \mathbf{v}\}$ a basis for H ? Explain why or why not.

