Note: The score you earn will be based on the correctness of your solutions. A "right answer" will earn no credit without a correct solution to support it.
(6 points) 1. Consider the circle C of radius 2 , centered at the origin $(0,0)$.
(a) Find a parametrization for C inducing a counterclockwise orientation and starting at $(2,0)$.
(b) Find a parametrization for C if it is now centered at the point $(4,7)$.
(6 points) 2. The position vector for a particle moving on a helix is

$$
\mathbf{c}(t)=\left(\cos (t), \sin (t), t^{2}\right)
$$

(a) Find the speed of the particle at time $t_{0}=4 \pi$.
(b) Find a parametrization for the tangent line to $\mathbf{c}(t)$ at $t_{0}=4 \pi$.
(c) Where will this line intersect the $x y$-plane?
(6 points) 3. Find $\frac{\partial}{\partial s}(f \circ T)(1,0)$, where $f(u, v)=\cos (u) \sin (v)$ and $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ is defined by $T(s, t)=\left(\cos \left(t^{2} s\right), \log \left(\sqrt{1+s^{2}}\right)\right)$.
(6 points) 4. Let $g(u, v)=\left(e^{u}, u+\sin (v)\right)$ and $f(x, y, z)=(x y, y z) . \quad$ Compute $\mathbf{D}(g \circ f)$ at $(0,1,0)$ using the chain rule.
(6 points) 5. Find the plane plane tangent to each of the following surfaces at the indicated point on the surface:
(a) the surface $x^{2}+2 y^{2}+3 x z=10$ at the point $\left(1,2, \frac{1}{3}\right)$
(b) the surface $y^{2}-x^{2}=3$ at the point $(1,2,8)$
(6 points) 6. Find a unit normal vector to the surface $\cos (x y)=e^{z}-2$ at the point $(1, \pi, 0)$.

