Note: The score you earn will be based on the correctness of your solutions. A "right answer" will earn no credit without a correct solution to support it.
(6 points) 1. Show that the following functions satisfy the one-dimensional wave equation $\frac{\partial^{2} f}{\partial x^{2}}=\frac{1}{c^{2}} \frac{\partial^{2} f}{\partial t^{2}}$.
(a) $f(x, t)=\sin (x-c t)$
(b) $f(x, t)=\sin (x) \sin (c t)$
(6 points) 2. A function $u(x, y)$ with continuous second partial derivatives satisfying Laplace's equation

$$
\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=0
$$

is called a harmonic function. Show that the function $u(x, y)=x^{3}-3 x y^{2}$ is harmonic.
(6 points) 3. Find and classify all critical points of

$$
f(x, y)=\frac{1}{3} x^{3}+\frac{1}{3} y^{3}-\frac{1}{2} x^{2}-\frac{5}{2} y^{2}+6 y+10
$$

(6 points) 4. Let $f(x, y)=1+x y-2 x+y$ and let D be the triangular region in \mathbb{R}^{2} with vertices $(-2,1)$, $(-2,5)$, and $(2,1)$. Find the absolute maximum and absolute minimum values of f on D. Give all points where these extreme values occur.
(6 points) 5. Consider the function $f(x, y)=x^{2}+x y+y^{2}$ defined on the unit disc $D=\left\{(x, y) \mid x^{2}+y^{2} \leq 1\right\}$.
(a) Use the method of Lagrange multipliers to locate the maximum and minimum points for f on the unit circle.
(b) Use the result of part (a) to determine the the absolute maximum and minimum values for f on D.
(6 points)
6. (a) Find three numbers whose product is 27 and whose sum is minimal.
(b) Find three numbers whose sum is 27 and whose product is maximal.

