Note: The score you earn will be based on the correctness of your solutions. A "right answer" will earn no credit without a correct solution to support it.
(6 points) 1. Evaluate the double integral $\iint_{D} x y d A$, where the region D is the triangular region whose vertices are $(0,0),(0,2),(2,0)$.
(6 points) 2. Evaluate $\iint_{D} y d A$, where D is the set of points (x, y) such that $0 \leq \frac{2 x}{\pi} \leq y$, and $y \leq \sin (x)$.
(6 points) 3. Change the order of integration and evaluate: $\int_{0}^{1} \int_{\sqrt{y}}^{1} e^{x^{3}} d x d y$.
(6 points) 4. If $D=[-1,1] \times[-1,2]$, show that $1 \leq \iint_{D} \frac{d x d y}{x^{2}+y^{2}+1} \leq 6$.
(6 points) 5. Perform the indicated integration over the given box: $\iiint_{B} x^{2} d x d y d z, B=[0,1] \times[0,1] \times[0,1]$.
(6 points) 6. Find the volume of the solid region bounded by $x=y, z=0, y=0, x=1$, and $x+y+z=0$.
(6 points) 7. Let D be the unit disk $x^{2}+y^{2} \leq 1$. Evaluate $\iint_{D} \exp \left(x^{2}+y^{2}\right) d x d y$ by making a change of variables to polar coordinates.
(6 points) 8. Integrate $z e^{x^{2}+y^{2}}$ over the cylinder $x^{2}+y^{2} \leq 4,2 \leq z \leq 3$.

