22
(a)

$$
\lim _{(x, y) \rightarrow(0,0)} \frac{x y^{3}}{x^{2}+y^{6}} \quad \text { Alog } x=0
$$

$$
=\lim _{(0, y) \rightarrow(0,0)} \frac{0 y^{3}}{0^{2}+y^{6}}
$$

$$
=\frac{0}{y^{6}}
$$

$$
=0
$$

(b)

$$
\lim _{(x, y)=(0,0)} \frac{x y^{3}}{x^{2}+y^{6}}=\lim _{(y, y) 4(0,0)} \frac{y^{3} \cdot y^{3}}{\left(y^{2}+y^{2}+y^{6}\right.}=\frac{1}{2}+1,5
$$

(4) From part (a), the linit value of $f(x, y)$ aby $x=0$ is 0

Frow pareb, the linit vame of $f(x, y)$ aby $x=y$) is $\frac{1}{2}$
By the clefinition of a linit of a function of two vainall, the limit valuer abong f aths $x=0, x=y^{3}$ are the sanes.

$$
\because \frac{1}{2} \neq 0
$$

$=. f(x, y)$ inte continous
12. $\quad z=f\left(x_{0}, y_{0}\right)+\left[\frac{\partial t}{\partial x}\left(x_{0}, y_{0}\right)\right]\left(x-x_{0}\right)+\left[\frac{\partial f}{\partial y}\left(x_{0}, y_{0}\right)\right]\left(y-y_{0}\right)$

Wen $x_{0}=y_{0}=0 \quad \frac{\partial t}{\partial x}\left(x_{0}, y_{0}\right) \frac{\partial}{\partial x} e^{2 x+3 y}=2 e^{2 x+3 y}$

$$
\begin{aligned}
& \quad \frac{\partial f}{\partial y}\left(x_{0}, y_{0}\right)=\frac{\partial}{\partial y} e^{2 x+1 y}=3 e^{2 x+3 y} \\
& z=e^{0}+2 e^{2 x+3 y}(x-0)+3 e^{2 x+3 y}(y-0) \\
& \text { when }=y=0 \\
& z=1+2 x+3 y
\end{aligned}
$$

All erect +2 any minor error cawed wog result $t 1$ all wrong to
(b)

$$
\begin{aligned}
& f(0.1,0)=1+2(0.1)+3(0)=1.2 \\
& f(0,0.1)=1+2(0)+3(0.1)=1.3
\end{aligned}
$$

All correct L either wrong +1 all mong to
(d)

$$
\begin{aligned}
& f(0.1,0)=e^{2(0.1)+3(0)} \text { nearly is time } \\
& f(0,0.1)=e^{2014)(0.1)}=1.35
\end{aligned}
$$

All correct $t /$ either wrong to .5

18

$$
\begin{aligned}
& z=t\left(x_{0}, y_{0}\right)+\left[\frac{\partial t}{\partial x}\left(x_{0}, y_{0}\right)\right]\left(x-x_{0}\right)+\left[\frac{\partial t}{\partial y}\left(x_{0}, y_{x}\right)\right]\left(y-y_{0}\right) \\
& \prod
\end{aligned}
$$

Each pare of z worth I point

$$
\begin{aligned}
\frac{\partial f}{\partial y}= & \frac{\partial}{\partial y}\left(x e^{y^{2}}-y_{e} e^{2}\right)=2 x y e^{y^{2}}-e^{x^{2}} \\
\text { when }\left(x_{0}, y_{0}\right)= & (1,2) \\
\frac{\partial t}{\partial x}= & e^{4}-4 e \quad \frac{\partial f}{\partial y}=4 e^{4}-e \\
\therefore & f\left(x_{0}, y_{0}\right)=f(1,4)=e^{4}-2 e \\
z= & \left(e^{4}-2 e\right)+\left(e^{4}-4 e\right)(x-1)+\left(4 e^{4}-e\right)(y-2) \\
& \left(e^{4}\right) \\
= & x\left(e^{4}-4 e\right)+y\left(4 e^{4}-e\right)+4 e-3 e^{4}(+3)
\end{aligned}
$$

(b)

$$
\begin{aligned}
z_{2}\left(x_{0}, y_{0}\right) & =x_{0}^{2} y_{0}^{2} \\
z_{2} & =f\left(x_{0}, y_{0}\right)+\left[\frac{\partial t}{\partial x}\left(x_{0}, y_{0}\right)\right]\left(x-x_{0}\right)+\left[\frac{\partial t}{\partial x}\left(x_{1}, y_{0}\right)\right]\left(y-y_{0}\right) \\
& =x_{0}^{2}-y_{0}^{2}+2 x_{0}\left(x-x_{0}\right)-2 y_{0}\left(y-y_{0}\right) \\
& =2 x_{0}-2 y y_{0}-x_{0}^{2}+y_{0}^{2}
\end{aligned}
$$

Fro fare a) $z=x\left(e^{4}-4 e\right)+y\left(4 e^{4}-e\right)+4 e-8 e^{4}$ their cefficior muse be sure

$$
\begin{aligned}
& -2 x_{0}=e^{4}-4 e+x_{0}=\frac{e^{4}-4 e}{2}-2 y_{0}=4 e^{4}-e \Rightarrow y_{0}=-\frac{4 e^{4}-e}{2} \\
& z-x_{0}^{2}-y_{0}^{2}=\frac{15 e^{2}-1 e^{8}}{4}
\end{aligned}
$$

comet +2
\therefore Wont is $\left(\frac{e^{4}+4 e}{2}, \frac{e-4 e^{4}}{2}, \frac{w e^{2}+15 e^{8}}{4}\right)$
paction correct $f 1$
23.

$$
z=f\left(x_{0}, y_{0}\right)+\left[\frac{\partial f}{\partial x}\left(x_{0}, y_{0} \mid\right]\left(x-x_{0}\right)+\left[\frac{\partial f}{\partial y}\left(x_{0}, y_{0}\right)\right]\left(y-y_{0}\right)\right.
$$

$$
\text { When } x_{0}=1 \quad y_{0}=2
$$

$$
\begin{aligned}
& f\left(x_{0}, y_{0}\right)=12 \cdot 2^{3}=8 \\
& \frac{\partial f}{\partial x}=\frac{\partial}{\partial x}\left(x^{2} y^{\prime}\right)=2 x y^{3}=16 \quad \frac{\partial f}{\partial y}=\frac{\partial}{\partial y}\left(x^{2} y\right)=3 x^{2} y^{2}=12 \\
& \therefore z=8+16(x-1)+12(y-2)=-32+16 x+12 y-\cdots+2 \text { geets plese }
\end{aligned}
$$

\because plane z conten's $(1,3,20)$ and $(2,1, z)$

$$
\begin{aligned}
\therefore z & =-32+(6,2+12=12 \\
\therefore((t) & =(1,3,20)+[(1,3,2)-(2,1,12)] t \\
& =(1,3,20)+(-1,2,8) t .
\end{aligned}
$$

