7.6 Surface Integrals of Vector Fields

Motivating Example: Wind is blowing through a window

\[F(x,y,z) = (1, 2, 2) \] vector field for wind

window is in the y-z plane

\[0 \leq x \leq 5, \quad 0 \leq z \leq 10 \]

(in xz-plane)

Question: At what rate is the wind flowing through the window?

Another example: \(F = \) vector field that is the velocity field of a liquid. Put an imagined surface \(S \), in liquid. What is the rate at which the fluid is crossing \(S \) (measured in say cubic meters per second)?
Answer to first question:

The amount that \((1,2,2)\) is going in the direction \((0,1,10)\) is

\[
(1,2,2) \cdot (0,1,10) = 1 \cdot 0 + 2 \cdot 1 + 2 \cdot 10 = 22
\]

Answer: \(50 \cdot 2 = 100\)
Answer to second question: The word for what we want to calculate is the flux of \(F \) through \(S \) and it is calculated by integrating the vector field over the surface.

Def: \(F = \) vector field \(F = (F_1, F_2, F_3) \)

\[S = \text{surface parametrized by } \Phi(u,v), \text{ where } (u,v) \in D \]

The surface integral of \(F \) over \(S \) is

\[\iint_S F \cdot d\mathbf{S} = \iint_D F(\Phi(u,v)) \cdot \mathbf{T}_u \times \mathbf{T}_v \, du \, dv \]

Example: \(S = x^2 + y^2 + z^2 = 1 \) unit sphere \(F(\mathbf{x},y,z) = (x,y,z) \) outward pointing vector field

What is the flux of \(F \) through \(S \)?
\[\Phi(\theta, \varphi) = (\sin \varphi \cos \theta, \sin \varphi \sin \theta, \cos \varphi), \quad 0 \leq \theta \leq 2\pi \]

\[T_\theta = \begin{pmatrix} \sin \varphi \sin \theta & \sin \varphi \cos \theta & 0 \end{pmatrix} \]

\[T_\varphi = \begin{pmatrix} \cos \varphi & \sin \varphi \sin \theta & -\sin \varphi \cos \varphi \end{pmatrix} \]

\[T_\theta \times T_\varphi = \begin{pmatrix} -\sin^2 \varphi \cos \theta & -\sin^2 \varphi \sin \theta & -\sin \varphi \cos \varphi \sin \theta \cos \theta \\ -\sin \varphi \cos \varphi \sin \theta & -\sin \varphi \cos \varphi \sin \theta & -\sin \varphi \cos \varphi \sin \theta \cos \theta \end{pmatrix} \]

\[T_\theta \times T_\varphi = \begin{pmatrix} -\sin^2 \varphi \cos \theta, & -\sin^2 \varphi \sin \theta, & -\sin \varphi \cos \varphi \end{pmatrix} \]

\[F(x, y, z) = \int \int_D F(\Phi(u, v)) \cdot T_\nu \times T_\nu \, du \, dv \]

\[F(\Phi(u, v)) = F(\sin \varphi \cos \theta, \sin \varphi \sin \theta, \cos \varphi) \]

\[= (\sin \varphi \cos \theta, \sin \varphi \sin \theta, \cos \varphi) \]
\[F(\varphi(\theta, \phi)) \cdot T_\theta \times T_\phi = (\sin^2 \phi \cos \theta, \sin^2 \phi \sin \theta, \cos \phi) \]
\[\times (-\sin^2 \phi \cos \theta, -\sin^2 \phi \sin \theta, -\sin \phi \cos \phi) \]
\[= -\sin^3 \phi \cos^2 \theta - \sin^3 \phi \sin^2 \theta - \sin \phi \cos^2 \phi \]
\[= -\sin^3 \phi (1) - \sin \phi \cos^2 \phi \]
\[= -\sin \phi (\sin^2 \phi + \cos^2 \phi) \]
\[= -\sin \phi \]

\[\iiint_{D} F(\varphi(\theta, \phi)) \cdot T_\theta \times T_\phi \, d\theta \, d\phi \, d\phi = \int_{0}^{2\pi} \int_{0}^{\pi} -\sin \phi \, d\phi \, d\theta \]
\[= \left[2\pi \cdot \cos \phi \right]_{0}^{\pi} = 2\pi (1 - 1) \]
\[= [-4\pi] \]
\[F(x, y, z) = (x, y, z) \]
Sphere example

\[\mathbf{T}_0 \times \mathbf{T}_\phi = (-\sin^2 \phi \cos \theta, -\sin^2 \phi \sin \theta, -\sin \phi \cos \phi) \]

\[\mathbf{T}_0 \times \mathbf{T}_\phi \left(\frac{\pi}{2}, \frac{\pi}{2} \right) = (-1, 0, -1, 0) \]

\[= (0, -1, 0) \]
Orientation

An oriented surface is a two-sided surface with one side specified as the \textit{outside} or \textit{positive} side. The other side is called the \textit{inside} or \textit{negative} side.

Example

\begin{itemize}
 \item Orientation of \(z=1 \) plane
 \item At each point \((x,y,z) \in S\) there are two unit normal
vectors, \(\vec{n}_1, \vec{n}_2 \) where \(\vec{n}_1 = -\vec{n}_2 \). The orientation of \(S \) chooses a unit normal vector at each point of \(S \), it chooses the unit normal vector pointing towards the outside.

\[(x_1 y_1 z) \in S, \quad \vec{n}(x_1 y_1 z) = \text{unit normal vector determined by orientation}\]

On other hand a parametrization \(\Phi(u, v) \) also determines a unit normal vector at each point:

\[\frac{T_u \times T_v}{||T_u \times T_v||} = \text{unit normal vector determined by } \Phi(u, v)\]

If

\[\frac{T_u \times T_v}{||T_u \times T_v||} = \vec{n}(\Phi(u, v))\]

then \(\Phi \) is called orientation preserving.
If \[\frac{T_u \times T_v}{\|T_u \times T_v\|} = -\hat{n} (\Phi(u,v)) \]

then \(\Phi \) is called orientation reversing.

Example

Given sphere \(x^2 + y^2 + z^2 = 1 \) the orientation such that the normal vector points away from the origin.

Then \(\Phi(\theta, \phi) = (\infty \sin \phi \cos \theta, \infty \sin \phi \sin \theta, \cos \phi) \)

is orientation reversing because the normal vector determined by \(\Phi(\theta, \phi) \) points towards the origin.