(1) Prove that every vector space V contains a unique zero vector 0. Thus it is correct to refer to 0 as “the” zero vector of a given vector space.

(2) Let V be a vector space, and let S be a subset of V.
 (a) Prove that if S contains the zero vector, then it is linearly dependent.
 (b) Prove that if S contains a linearly dependent set, then it is linearly dependent.
 (c) Prove that if S is contained in a linearly independent set, then it is linearly independent.

(3) (a) Let V be the set of all polynomials of degree n in a variable x. Explain why V is not a vector space.
 (b) Let V be the vector space of all polynomials of degree less than n in a variable x. Prove that V is n-dimensional.

(4) (a) Let V be the vector space of all functions $f : \mathbb{R} \to \mathbb{R}$. Prove that V is infinite-dimensional.
 (b) Let V be a vector space. What is the dimension of $\text{Fun}(V,V)$, the vector space of functions $f : V \to V$?

(5) Let V be an n-dimensional vector space. Prove that V contains a subspace of dimension k for each $0 \leq k \leq n$.