(1) Let Γ be a graph on n vertices. Prove that if every vertex of Γ has degree at least $\frac{1}{2}(n - 1)$, then Γ is connected.

(2) Construct a graph Γ with edge connectivity $\lambda(\Gamma) = 2016$ and vertex connectivity $\kappa(\Gamma) = 1$. Explain why your graph has the required connectivity values.

(3) Let Γ be a graph. Prove that it is possible to colour every vertex of Γ either black or white in such a way that, for every vertex v, the number of neighbours of v which have the same colour as v does not exceed the number of neighbours of v which do not have the same colour as v.

(4) Let Γ be a connected graph. Prove that the boundary of Γ contains at least two vertices. (Hint: start by proving that the boundary is nonempty).

\footnote{All graphs on this exam are simple graphs.}