Flips and flops

James McKernan

MIT
We would like to give a classification of general algebraic varieties, modeled on the case of curves.
We would like to give a classification of general algebraic varieties, modeled on the case of curves.

Smooth projective curves (or compact Riemann surfaces) come in three types:
We would like to give a classification of general algebraic varieties, modeled on the case of curves.

Smooth projective curves (or compact Riemann surfaces) come in three types:

- \mathbb{P}^1, the Riemann sphere.
We would like to give a classification of general algebraic varieties, modeled on the case of curves.

Smooth projective curves (or compact Riemann surfaces) come in three types:

- \(\mathbb{P}^1 \), the Riemann sphere.
- \(E = \mathbb{C}/\Lambda \), elliptic curves (one dimensional tori).
We would like to give a classification of general algebraic varieties, modeled on the case of curves.

Smooth projective curves (or compact Riemann surfaces) come in three types:

- \mathbb{P}^1, the Riemann sphere.
- $E = \mathbb{C}/\Lambda$, elliptic curves (one dimensional tori).
- curves of genus at least two.
We would like to give a classification of general algebraic varieties, modeled on the case of curves.

Smooth projective curves (or compact Riemann surfaces) come in three types:

- \(\mathbb{P}^1 \), the Riemann sphere.
- \(E = \mathbb{C}/\Lambda \), elliptic curves (one dimensional tori).
- curves of genus at least two.

Smooth curves of genus \(g \geq 2 \) form a moduli space \(\mathcal{M}_g \), a quasi-projective variety of dimension \(3g - 3 \).
We would like to give a classification of general algebraic varieties, modeled on the case of curves.

Smooth projective curves (or compact Riemann surfaces) come in three types:
- \mathbb{P}^1, the Riemann sphere.
- $E = \mathbb{C}/\Lambda$, elliptic curves (one dimensional tori).
- curves of genus at least two.

Smooth curves of genus $g \geq 2$ form a moduli space \mathcal{M}_g, a quasi-projective variety of dimension $3g - 3$.

It is more natural to work with the projective variety $\overline{\mathcal{M}}_g \supset \mathcal{M}_g$, which parametrises connected nodal curves, with only finitely many automorphisms.
Every smooth plane curve of degree 4 is a curve of genus 3 and vice-versa the general point of M_3 is a smooth plane curve of degree 4.
Plane curves of degree four

- Every smooth plane curve of degree 4 is a curve of genus 3 and vice-versa the general point of \mathcal{M}_3 is a smooth plane curve of degree 4.

- The space of plane curves of degree 4 is naturally parametrised by \mathbb{P}^{14}.
Every smooth plane curve of degree 4 is a curve of genus 3 and vice-versa the general point of \mathcal{M}_3 is a smooth plane curve of degree 4.

The space of plane curves of degree 4 is naturally parametrised by \mathbb{P}^{14}.

There is a natural rational map $\pi : \mathbb{P}^{14} \dashrightarrow \overline{\mathcal{M}}_3$, which assigns to a smooth plane curve the corresponding genus 3 curve.
Every smooth plane curve of degree 4 is a curve of genus 3 and vice-versa the general point of \mathcal{M}_3 is a smooth plane curve of degree 4.

The space of plane curves of degree 4 is naturally parametrised by \mathbb{P}^{14}.

There is a natural rational map $\pi: \mathbb{P}^{14} \dashrightarrow \overline{\mathcal{M}}_3$, which assigns to a smooth plane curve the corresponding genus 3 curve.

Let I be the closure of the graph of π and let $p: I \rightarrow \mathbb{P}^{14}, q: I \rightarrow \overline{\mathcal{M}}_3$ be the natural maps.
Every smooth plane curve of degree 4 is a curve of genus 3 and vice-versa the general point of \mathcal{M}_3 is a smooth plane curve of degree 4.

The space of plane curves of degree 4 is naturally parametrised by \mathbb{P}^{14}.

There is a natural rational map $\pi : \mathbb{P}^{14} \dashrightarrow \overline{\mathcal{M}}_3$, which assigns to a smooth plane curve the corresponding genus 3 curve.

Let I be the closure of the graph of π and let $p : I \rightarrow \mathbb{P}^{14}$, $q : I \rightarrow \overline{\mathcal{M}}_3$ be the natural maps.

Definition: C is hyperelliptic if C is a double cover of \mathbb{P}^1. Let $\mathcal{H} \subset \overline{\mathcal{M}}_3$ be the closure of the hyperelliptic locus.
Analysis of π

- \mathcal{H} has dimension 5, since a hyperelliptic curve is determined by its 8 branch points, $0, 1, \infty, \ldots$.
Analysis of π

- \mathcal{H} has dimension 5, since a hyperelliptic curve is determined by its 8 branch points, 0, 1, ∞,

- A general point of $p(q^{-1}(\mathcal{H}))$ is the double of a smooth plane conic, which are all projectively equivalent.
Analysis of π

- \mathcal{H} has dimension 5, since a hyperelliptic curve is determined by its 8 branch points, 0, 1, ∞,

- A general point of $p(q^{-1}(\mathcal{H}))$ is the double of a smooth plane conic, which are all projectively equivalent.

- So π cannot possibly be a morphism.
Analysis of π

- \mathcal{H} has dimension 5, since a hyperelliptic curve is determined by its 8 branch points, 0, 1, ∞, ...

- A general point of $p(q^{-1}(\mathcal{H}))$ is the double of a smooth plane conic, which are all projectively equivalent.

- So π cannot possibly be a morphism.

- Similarly p blows up some components of the locus of singular plane curves (for example, a double line union a conic) and q blows up some nodal curves.
Analysis of π

- \mathcal{H} has dimension 5, since a hyperelliptic curve is determined by its 8 branch points, 0, 1, ∞,

- A general point of $p(q^{-1}(\mathcal{H}))$ is the double of a smooth plane conic, which are all projectively equivalent.

- So π cannot possibly be a morphism.

- Similarly p blows up some components of the locus of singular plane curves (for example, a double line union a conic) and q blows up some nodal curves.

- The geometry of the birational map π is surprisingly rich, even though $(d, g, r, n) = (4, 3, 2, 1)$ are all relatively small.
Higher dimensions

- If X is a projective variety, then the canonical divisor K_X is a good substitute for the genus.
If X is a projective variety, then the **canonical divisor** K_X is a good substitute for the genus.

A **divisor** is a formal linear combination of codimension one subvarieties. K_X is the zeroes minus the poles of a rational differential.
If X is a projective variety, then the canonical divisor K_X is a good substitute for the genus. A divisor is a formal linear combination of codimension one subvarieties. K_X is the zeroes minus the poles of a rational differential. Every divisor on a curve has a degree. The degree of the canonical divisor is $2g - 2$.
Higher dimensions

- If X is a projective variety, then the canonical divisor K_X is a good substitute for the genus.

- A divisor is a formal linear combination of codimension one subvarieties. K_X is the zeroes minus the poles of a rational differential.

- Every divisor on a curve has a degree. The degree of the canonical divisor is $2g - 2$.

- We expect the geometry of a projective variety to be reflected by the sign of the canonical divisor.
If X is a projective variety, then the **canonical divisor** K_X is a good substitute for the genus.

A **divisor** is a formal linear combination of codimension one subvarieties. K_X is the zeroes minus the poles of a rational differential.

Every divisor on a curve has a **degree**. The degree of the canonical divisor is $2g - 2$.

We expect the geometry of a projective variety to be reflected by the **sign** of the canonical divisor.

X is a variety of **general type** if K_X is **big** (maximally positive).
If X is a projective variety, then the canonical divisor K_X is a good substitute for the genus.

A divisor is a formal linear combination of codimension one subvarieties. K_X is the zeroes minus the poles of a rational differential.

Every divisor on a curve has a degree. The degree of the canonical divisor is $2g - 2$.

We expect the geometry of a projective variety to be reflected by the sign of the canonical divisor.

X is a variety of general type if K_X is big (maximally positive).

A curve C is of general type if and only if $g \geq 2$.
Theorem: (BCHM, Siu) The canonical ring $R(X, K_X)$ is f.g.
Theorem: (BCHM, Siu) The canonical ring $R(X, K_X)$ is f.g.

As a consequence every variety Y of general type is birational $\phi_{mK_Y}: Y \dashrightarrow X \subset \mathbb{P}^r$ to a variety X naturally embedded in \mathbb{P}^r, where K_X is ample and X has canonical singularities.
Moduli spaces

Theorem: (BCHM, Siu) The canonical ring $R(X, K_X)$ is f.g.

- As a consequence every variety Y of general type is birational $\phi_{mK_Y}: Y \dasharrow X \subset \mathbb{P}^r$ to a variety X naturally embedded in \mathbb{P}^r, where K_X is ample and X has canonical singularities.

Theorem: (Hacon-, Takayama, Tsuji) If the degree K_X^n is bounded, then r is bounded.
Moduli spaces

Theorem: (BCHM, Siu) The canonical ring $R(X, K_X)$ is f.g.

- As a consequence every variety Y of general type is birational $\phi_{mK_Y} : Y \to X \subset \mathbb{P}^r$ to a variety X naturally embedded in \mathbb{P}^r, where K_X is ample and X has canonical singularities.

Theorem: (Hacon-, Takayama, Tsuji) If the degree K^n_X is bounded, then r is bounded.

- So if we fix the degree there is a family $\pi : \mathcal{X} \to \mathcal{H}$ parametrising all projective varieties such that K_X is ample and X has canonical singularities.
Moduli spaces

Theorem: (BCHM, Siu) The canonical ring $R(X, K_X)$ is f.g.

- As a consequence every variety Y of general type is birational $\phi_{mK_Y}: Y \to X \subset \mathbb{P}^r$ to a variety X naturally embedded in \mathbb{P}^r, where K_X is ample and X has canonical singularities.

Theorem: (Hacon-, Takayama, Tsuji) If the degree K^n_X is bounded, then r is bounded.

- So if we fix the degree there is a family $\pi: \mathcal{X} \to \mathcal{H}$ parametrising all projective varieties such that K_X is ample and X has canonical singularities.

Plan: Modify the quotient $\mathcal{H}/\text{PGL}(r+1)$ birationally to construct a geometrically meaningful projective moduli space $\overline{\mathcal{M}}$.

Flips and flops – p. 6
Start with a smooth projective variety X.
Start with a smooth projective variety X.

Question: Is K_X nef? If yes, then **STOP:** minimal model.
Start with a smooth projective variety X.

Question: Is K_X nef? If yes, then **STOP:** minimal model.

If no, then there is curve C such that $K_X \cdot C < 0$. There is a morphism $\pi : X \to Z$ with connected fibres such that $f(C')$ is point if and only if C and C' are numerically equivalent.
Start with a smooth projective variety X.

Question: Is K_X nef? If yes, then **STOP:** minimal model.

If no, then there is curve C such that $K_X \cdot C < 0$. There is a morphism $\pi : X \longrightarrow Z$ with connected fibres such that $f(C')$ is point if and only if C and C' are numerically equivalent.

- $\dim Z < \dim X$. The fibres F of π are Fano varieties, $-K_F$ is ample. **STOP:** Mori fibre space.
Start with a smooth projective variety X.

Question: Is K_X nef? If yes, then **STOP: minimal model.**

If no, then there is curve C such that $K_X \cdot C < 0$. There is a morphism $\pi: X \to Z$ with connected fibres such that $f(C')$ is point if and only if C and C' are numerically equivalent.

- $\dim Z < \dim X$. The fibres F of π are Fano varieties, $-K_F$ is ample. **STOP: Mori fibre space.**
- $\dim Z = \dim X$, the locus of curves contracted by π is a divisor. Return to (2).
Start with a smooth projective variety X.

Question: Is K_X nef? If yes, then STOP: minimal model.

If no, then there is curve C such that $K_X \cdot C < 0$. There is a morphism $\pi : X \to Z$ with connected fibres such that $f(C')$ is point if and only if C and C' are numerically equivalent.

- $\dim Z < \dim X$. The fibres F of π are Fano varieties, $-K_F$ is ample. STOP: Mori fibre space.
- $\dim Z = \dim X$, the locus of curves contracted by π is a divisor. Return to (2).
- π is small. The intersection number $K_Z \cdot C$ does not even make sense. Instead replace X by X^+, the flip.
$-K_X$ is π-ample whilst K_{X^+} is π^+-ample.
$-K_X$ is π-ample whilst K_{X^+} is π^+-ample.

Theorem: (Hacon,-) Flips exist.
$-K_X$ is π-ample whilst K_{X^+} is π^+-ample.

Theorem: (Hacon,-) Flips exist.

Question: How do we know that this process terminates?
$-K_X$ is π-ample whilst K_{X^+} is π^+-ample.

Theorem: (Hacon,-) Flips exist.

Question: How do we know that this process terminates? It is clear that we cannot keep contracting divisors, but why could there not be an infinite sequence of flips?
Theorem: (BCHM) Let X be a smooth projective variety, A and an ample \mathbb{Q}-divisor, and let $D_1 + D_2 + \cdots + D_k$ be a normal crossings divisor. Then there are only finitely many minimal models, for

$$K_X + A + \sum a_i D_i, \ (a_1, a_2, \ldots, a_k) \in [0, 1]^k.$$
Theorem: (BCHM) Let X be a smooth projective variety, A and an ample \mathbb{Q}-divisor, and let $D_1 + D_2 + \cdots + D_k$ be a normal crossings divisor. Then there are only finitely many minimal models, for $K_X + A + \sum a_i D_i$, $(a_1, a_2, \ldots, a_k) \in [0, 1]^k$.

Example: $X = \overline{M}_g$, D_i the boundary divisors. Conjecturally the minimal models are moduli spaces.
Theorem: (BCHM) Let X be a smooth projective variety, A and an ample \mathbb{Q}-divisor, and let $D_1 + D_2 + \cdots + D_k$ be a normal crossings divisor. Then there are only finitely many minimal models, for $K_X + A + \sum a_i D_i$, $(a_1, a_2, \ldots, a_k) \in [0, 1]^k$.

Example: $X = \mathcal{M}_g$, D_i the boundary divisors. Conjecturally the minimal models are moduli spaces.

- If we run a MMP whose intermediary steps are all minimal models, then termination is clear.
Theorem: \((\text{BCHM})\) Let \(X\) be a smooth projective variety, \(A\) and an ample \(\mathbb{Q}\)-divisor, and let \(D_1 + D_2 + \cdots + D_k\) be a normal crossings divisor. Then there are only finitely many minimal models, for \(K_X + A + \sum a_i D_i, (a_1, a_2, \ldots, a_k) \in [0, 1]^k\).

Example: \(X = \overline{\mathcal{M}}_g, D_i\) the boundary divisors. Conjecturally the minimal models are moduli spaces.

- If we run a MMP whose intermediary steps are all minimal models, then termination is clear.
- Unfortunately this trick does not seem to work to construct the moduli space of varieties of general type. We run into a brick wall called \textit{abundance}.
Let $f : \mathbb{C}^n \longrightarrow \mathbb{C}$ be a holomorphic function, for example given by a polynomial.
Log canonical threshold

Let $f : \mathbb{C}^n \rightarrow \mathbb{C}$ be a holomorphic function, for example given by a polynomial.

Question: How singular is f at the origin?
Log canonical threshold

Let \(f : \mathbb{C}^n \longrightarrow \mathbb{C} \) be a holomorphic function, for example given by a polynomial.

Question: How singular is \(f \) at the origin?

Example: Is \(\frac{1}{|f|^2} \) integrable in a neighbourhood of the origin?
Let $f : \mathbb{C}^n \longrightarrow \mathbb{C}$ be a holomorphic function, for example given by a polynomial.

Question: How singular is f at the origin?

Example: Is $\frac{1}{|f|^2}$ integrable in a neighbourhood of the origin?

Question: More generally, what about $\frac{1}{|f|^{2t}}$, for $t \in \mathbb{R}$?
Log canonical threshold

- Let $f : \mathbb{C}^n \rightarrow \mathbb{C}$ be a holomorphic function, for example given by a polynomial.

Question: How singular is f at the origin?

Example: Is $\frac{1}{|f|^2}$ integrable in a neighbourhood of the origin?

Question: More generally, what about $\frac{1}{|f|^{2t}}$, for $t \in \mathbb{R}$?

- As we increase t, $\frac{1}{|f|^{2t}}$ is more singular.
Log canonical threshold

- Let $f : \mathbb{C}^n \rightarrow \mathbb{C}$ be a holomorphic function, for example given by a polynomial.

Question: How singular is f at the origin?

Example: Is $\frac{1}{|f|^2}$ integrable in a neighbourhood of the origin?

Question: More generally, what about $\frac{1}{|f|^{2t}}$, for $t \in \mathbb{R}$?

- As we increase t, $\frac{1}{|f|^{2t}}$ is more singular.

- The supremum of t for which $\frac{1}{|f|^{2t}}$ is locally integrable, is called the log canonical threshold.
Examples

- Consider $f: \mathbb{C} \rightarrow \mathbb{C}, \ z \rightarrow z$.
Examples

- Consider $f : \mathbb{C} \rightarrow \mathbb{C}$, $z \rightarrow z$.
- In polar coordinates, $|z|^{2t} = \frac{1}{r^{2t}}$, and $\int_{0}^{\epsilon} \frac{1}{r^{2t-1}} \, dr$ is a proper integral if and only if $2t - 1 \leq 1$.
Examples

- Consider \(f : \mathbb{C} \to \mathbb{C}, \ z \to z \).

- In polar coordinates, \(\frac{1}{|z|^{2t}} = \frac{1}{r^{2t}} \), and \(\int_{0}^{\epsilon} \frac{1}{r^{2t-1}} \, dr \) is a proper integral if and only if \(2t - 1 \leq 1 \).

- So the log canonical threshold is 1.
Examples

- Consider \(f : \mathbb{C} \rightarrow \mathbb{C}, \ z \rightarrow z \).

- In polar coordinates, \(\frac{1}{|z|^{2t}} = \frac{1}{r^{2t}} \), and \(\int_{0}^{\epsilon} \frac{1}{r^{2t-1}} \, dr \) is a proper integral if and only if \(2t - 1 \leq 1 \).

- So the log canonical threshold is 1.

- More generally, the log canonical threshold of \(z \rightarrow z^a \) is \(1/a \).
Examples

- Consider \(f : \mathbb{C} \to \mathbb{C}, \ z \to z \).

- In polar coordinates, \(\frac{1}{|z|^{2t}} = \frac{1}{r^{2t}} \), and \(\int_0^\epsilon \frac{1}{r^{2t-1}} \, dr \) is a proper integral if and only if \(2t - 1 \leq 1 \).

- So the log canonical threshold is 1.

- More generally, the log canonical threshold of \(z \to z^a \) is \(1/a \).

- More generally still, the log canonical threshold of \((z_1, z_2, \ldots, z_n) \to z_1^{a_1} z_2^{a_2} \ldots z_n^{a_n} \) is \(\min(1/a_1, 1/a_2, \ldots, 1/a_n) \), by Fubini.
Examples

- Consider $f : \mathbb{C} \rightarrow \mathbb{C}, z \rightarrow z$.
- In polar coordinates, $|z|^{2t} = \frac{1}{r^{2t}}$, and $\int_0^\epsilon \frac{1}{r^{2t-1}} \, dr$ is a proper integral if and only if $2t - 1 \leq 1$.
- So the log canonical threshold is 1.
- More generally, the log canonical threshold of $z \rightarrow z^a$ is $1/a$.
- More generally still, the log canonical threshold of $(z_1, z_2, \ldots, z_n) \rightarrow z_1^{a_1} z_2^{a_2} \ldots z_n^{a_n}$ is $\min(1/a_1, 1/a_2, \ldots, 1/a_n)$, by Fubini.

Question: How about $(x, y) \rightarrow y^2 + x^3$?
Here x and y are complex variables, not the real and imaginary part of a complex variable.
Here x and y are complex variables, not the real and imaginary part of a complex variable.

Consider $\int_{B^4} |y^2 + x^3|^{-2t}$.
Here x and y are complex variables, not the real and imaginary part of a complex variable.

Consider $\int_{B^4} |y^2 + x^3|^{-2t}$.

Let $I_r = \int_{\Omega_r} |y^2 + x^3|^{-2t}$, where

$$\Omega_r = \{ (x, y) \in \mathbb{C}^2 \mid 2^{-2(r+1)} < |x| < 2^{-2r}, 2^{-3(r+1)} < |y| < 2^{-3r} \}.$$
Here x and y are complex variables, not the real and imaginary part of a complex variable.

Consider $\int_{B^4} |y^2 + x^3|^{-2t}$.

Let $I_r = \int_{\Omega_r} |y^2 + x^3|^{-2t}$, where

$$\Omega_r = \{ (x, y) \in \mathbb{C}^2 | 2^{-2(r+1)} < |x| < 2^{-2r}, 2^{-3(r+1)} < |y| < 2^{-3r} \}.$$

Substituting $x' = 2^2 x$ and $y' = 2^3 y$ we see that $I_{r+1} = 2^{12t-10} I_r$, and summing over Ω_r the integral is convergent if $t < 5/6$.
Here x and y are complex variables, not the real and imaginary part of a complex variable.

Consider $\int_{B^4} |y^2 + x^3|^{-2t}$.

Let $I_r = \int_{\Omega_r} |y^2 + x^3|^{-2t}$, where

$$\Omega_r = \{ (x, y) \in \mathbb{C}^2 \mid 2^{-2(r+1)} < |x| < 2^{-2r}, \quad 2^{-3(r+1)} < |y| < 2^{-3r} \}.$$

Substituting $x' = 2^2x$ and $y' = 2^3y$ we see that $I_{r+1} = 2^{12t-10} I_r$, and summing over Ω_r the integral is convergent if $t < 5/6$.

So the log canonical threshold a is $5/6$.
Another way

- Clearly the log canonical threshold α only depends on the cuspidal curve C, $(y^2 + x^3 = 0) \subset \mathbb{C}^2$.
Another way

- Clearly the log canonical threshold a only depends on the cuspidal curve C, $(y^2 + x^3 = 0) \subset \mathbb{C}^2$.
- Let $\pi : S \rightarrow \mathbb{C}^2$ resolve the singularities of C.
Another way

- Clearly the log canonical threshold a only depends on the cuspidal curve C, $(y^2 + x^3 = 0) \subset \mathbb{C}^2$.

- Let $\pi : S \longrightarrow \mathbb{C}^2$ resolve the singularities of C.

- On S, the strict transform \tilde{C} of C and the exceptional locus E_1, E_2 and E_3 of π has normal crossings ($\pi^* f$ is locally defined by monomials).
Another way

- Clearly the log canonical threshold a only depends on the cuspidal curve C, $(y^2 + x^3 = 0) \subset \mathbb{C}^2$.
- Let $\pi : S \to \mathbb{C}^2$ resolve the singularities of C.
- On S, the strict transform \tilde{C} of C and the exceptional locus E_1, E_2 and E_3 of π has normal crossings ($\pi^* f$ is locally defined by monomials).
- But we are not integrating $\pi^* f$, but $\pi^* f\ dx \wedge dy$, so we have to take account of the Jacobian.
Another way

Clearly the log canonical threshold \(a \) only depends on the cuspidal curve \(C \), \((y^2 + x^3 = 0) \subset \mathbb{C}^2\).

Let \(\pi : S \longrightarrow \mathbb{C}^2 \) resolve the singularities of \(C \).

On \(S \), the strict transform \(\tilde{C} \) of \(C \) and the exceptional locus \(E_1, E_2 \) and \(E_3 \) of \(\pi \) has normal crossings (\(\pi^* f \) is locally defined by monomials).

But we are not integrating \(\pi^* f \), but \(\pi^* f \, dx \wedge dy \), so we have to take account of the Jacobian.

We write
\[
K_S + t\tilde{C} + a_1E_1 + a_2E_2 + a_3E_3 = \pi^*(K_{\mathbb{C}^2} + tC).
\]
Another way

- Clearly the log canonical threshold a only depends on the cuspidal curve C, $(y^2 + x^3 = 0) \subset \mathbb{C}^2$.
- Let $\pi: S \rightarrow \mathbb{C}^2$ resolve the singularities of C.
- On S, the strict transform \tilde{C} of C and the exceptional locus E_1, E_2 and E_3 of π has normal crossings ($\pi^* f$ is locally defined by monomials).
- But we are not integrating $\pi^* f$, but $\pi^* f \, dx \wedge dy$, so we have to take account of the Jacobian.
- We write

 $K_S + t\tilde{C} + a_1 E_1 + a_2 E_2 + a_3 E_3 = \pi^* (K_{\mathbb{C}^2} + tC)$.
- We already know the log canonical threshold a is the largest $t \leq 1$ such that $\max(a_1, a_2, a_3) \leq 1$.
Yet another way

- $a_1 = 2t - 1$, $a_2 = 3t - 3$, and $a_3 = 6t - 5$. The log canonical threshold a is $5/6$.
Yet another way

- \(a_1 = 2t - 1 \), \(a_2 = 3t - 3 \), and \(a_3 = 6t - 5 \). The log canonical threshold \(a \) is \(5/6 \).

- But if we contract, \(f : S \to T \), \(E_1 \) and \(E_2 \), then \(T \) has two singular points along \(\tilde{C} \), of index 2 and 3.
Yet another way

- \(a_1 = 2t - 1, a_2 = 3t - 3, \) and \(a_3 = 6t - 5. \) The log canonical threshold \(a \) is \(\frac{5}{6} . \)

- But if we contract, \(f : S \longrightarrow T, E_1 \) and \(E_2, \) then \(T \) has two singular points along \(\tilde{C}, \) of index 2 and 3.

- \(K_T + a\tilde{C} + E = \psi^*(K_S + aC), \) where the induced birational map is \(\psi : T \longrightarrow \mathbb{C}^2, \) and \(E = f(E_3). \)
Yet another way

- $a_1 = 2t - 1$, $a_2 = 3t - 3$, and $a_3 = 6t - 5$. The log canonical threshold a is $5/6$.

- But if we contract, $f : S \to T$, E_1 and E_2, then T has two singular points along \tilde{C}, of index 2 and 3.

- $K_T + a\tilde{C} + E = \psi^*(K_S + aC)$, where the induced birational map is $\psi : T \to \mathbb{C}^2$, and $E = f(E_3)$.

- $0 = (K_T + a\tilde{C} + E)|_E = -2 + 1/2 + 2/3 + a$, where we applied orbifold adjunction.
Yet another way

- \(a_1 = 2t - 1, a_2 = 3t - 3, \) and \(a_3 = 6t - 5.\) The log canonical threshold \(a\) is \(5/6.\)
- But if we contract, \(f : S \rightarrow T, E_1\) and \(E_2,\) then \(T\) has two singular points along \(\tilde{C},\) of index 2 and 3.
- \(K_T + a\tilde{C} + E = \psi^*(K_S + aC),\) where the induced birational map is \(\psi : T \rightarrow \mathbb{C}^2,\) and \(E = f(E_3).\)
- \(0 = (K_T + a\tilde{C} + E)|_E = -2 + 1/2 + 2/3 + a,\) where we applied orbifold adjunction.
- So the log canonical threshold \(a = 5/6.\)
Yet another way

- \(a_1 = 2t - 1\), \(a_2 = 3t - 3\), and \(a_3 = 6t - 5\). The log canonical threshold \(a\) is \(5/6\).

- But if we contract, \(f : S \rightarrow T\), \(E_1\) and \(E_2\), then \(T\) has two singular points along \(\tilde{C}\), of index 2 and 3.

- \(K_T + a\tilde{C} + E = \psi^*(K_S + aC)\), where the induced birational map is \(\psi : T \rightarrow \mathbb{C}^2\), and \(E = f(E_3)\).

- \(0 = (K_T + a\tilde{C} + E)|_E = -2 + 1/2 + 2/3 + a\), where we applied orbifold adjunction.

- So the log canonical threshold \(a = 5/6\).

- The map \(\psi\) is in fact a weighted blow up.
Further examples

If C is given as $y^a + x^b$, then the log canonical threshold is $\min(1/a + 1/b, 1)$, using either integrals or weighted blow ups.
Further examples

- If C is given as $y^a + x^b$, then the log canonical threshold is $\min(1/a + 1/b, 1)$, using either integrals or weighted blow ups.

- More generally still, if $S \subset \mathbb{P}^n$ is the hypersurface given by $x_1^{a_1} + x_2^{a_2} + \cdots + x_n^{a_n}$ then the log canonical threshold is $\min(1/a_1 + 1/a_2 + \cdots + 1/a_n, 1)$.
Further examples

- If C is given as $y^a + x^b$, then the log canonical threshold is $\min(1/a + 1/b, 1)$, using either integrals or weighted blow ups.

- More generally still, if $S \subset \mathbb{P}^n$ is the hypersurface given by $x_1^{a_1} + x_2^{a_2} + \cdots + x_n^{a_n}$ then the log canonical threshold is $\min(1/a_1 + 1/a_2 + \cdots + 1/a_n, 1)$.

Conjecture: (Shokurov) The set of all log canonical thresholds satisfies the ACC.
Further examples

If C is given as $y^a + x^b$, then the log canonical threshold is $\min(1/a + 1/b, 1)$, using either integrals or weighted blow ups.

More generally still, if $S \subset \mathbb{P}^n$ is the hypersurface given by $x_1^{a_1} + x_2^{a_2} + \cdots + x_n^{a_n}$ then the log canonical threshold is $\min(1/a_1 + 1/a_2 + \cdots + 1/a_n, 1)$.

Conjecture: (Shokurov) The set of all log canonical thresholds satisfies the ACC.

Theorem: (de Fernex, Ein, Kollár, Mustaţă) This conjecture holds for hypersurfaces.
If C is given as $y^a + x^b$, then the log canonical threshold is $\min(1/a + 1/b, 1)$, using either integrals or weighted blow ups.

More generally still, if $S \subset \mathbb{P}^n$ is the hypersurface given by $x_1^{a_1} + x_2^{a_2} + \cdots + x_n^{a_n}$ then the log canonical threshold is $\min(1/a_1 + 1/a_2 + \cdots + 1/a_n, 1)$.

Conjecture: (Shokurov) The set of all log canonical thresholds satisfies the ACC.

Theorem: (de Fernex, Ein, Kollár, Mustaţă) This conjecture holds for hypersurfaces.

We hope to prove the full version of Shokurov’s conjecture using birational boundedness.
Termination via ACC

- Start $K_X + \Delta \sim_\mathbb{Q} D \geq 0$ kawamata log terminal.
Termination via ACC

- Start $K_X + \Delta \sim_{\mathbb{Q}} D \geq 0$ kawamata log terminal.
- Let $\lambda = \{ t \in \mathbb{R} \mid K_X + \Delta + tD \text{ is log canonical} \}$ be the log canonical threshold.
Termination via ACC

- Start $K_X + \Delta \sim_\mathbb{Q} D \geq 0$ kawamata log terminal.
- Let $\lambda = \{ t \in \mathbb{R} \mid K_X + \Delta + tD \text{ is log canonical} \}$ be the log canonical threshold.

Theorem: (Shokurov) By induction, only finitely many steps of the MMP intersect the locus where $(X, \Delta + D)$ is not log canonical.
Termination via ACC

- Start $K_X + \Delta \sim_{\mathbb{Q}} D \geq 0$ kawamata log terminal.
- Let $\lambda = \{ t \in \mathbb{R} \mid K_X + \Delta + tD \text{ is log canonical} \}$ be the log canonical threshold.

Theorem: (Shokurov) By induction, only finitely many steps of the MMP intersect the locus where $(X, \Delta + D)$ is not log canonical.

- So after finitely many steps, we increase the log canonical threshold λ.
Termination via ACC

- Start $K_X + \Delta \sim_{\mathbb{Q}} D \geq 0$ kawamata log terminal.
- Let $\lambda = \{ t \in \mathbb{R} \mid K_X + \Delta + tD \text{ is log canonical} \}$ be the log canonical threshold.

Theorem: (Shokurov) By induction, only finitely many steps of the MMP intersect the locus where $(X, \Delta + D)$ is not log canonical.

- So after finitely many steps, we increase the log canonical threshold λ.
- But this cannot happen indefinitely by the ACC for the log canonical threshold.
Termination via ACC

- Start $K_X + \Delta \sim_{\mathbb{Q}} D \geq 0$ kawamata log terminal.
- Let $\lambda = \{ t \in \mathbb{R} \mid K_X + \Delta + tD \text{ is log canonical} \}$ be the log canonical threshold.

Theorem: (Shokurov) By induction, only finitely many steps of the MMP intersect the locus where $(X, \Delta + D)$ is not log canonical.

- So after finitely many steps, we increase the log canonical threshold λ.
- But this cannot happen indefinitely by the ACC for the log canonical threshold.
- This argument is due to Birkar.
Birkar’s local-global argument

- Unfortunately, even if we knew ACC for the log canonical threshold, the induction is not yet complete.
Birkar’s local-global argument

- Unfortunately, even if we knew ACC for the log canonical threshold, the induction is not yet complete.
- The problem is that the end product of the $(K_X + \Delta)$-MMP might be a Mori fibre space, in which case there is never a divisor $D \geq 0$ such that $K_X + \Delta \sim_{\mathbb{Q}} D \geq 0$.
Birkar’s local-global argument

- Unfortunately, even if we knew ACC for the log canonical threshold, the induction is not yet complete.

- The problem is that the end product of the \((K_X + \Delta)\)-MMP might be a Mori fibre space, in which case there is never a divisor \(D \geq 0\) such that \(K_X + \Delta \sim_{\mathbb{Q}} D \geq 0\).

- However, there is some reason to hope that we might prove a version of termination strong enough to construct projective moduli spaces.
Conjecture: (Borisov, Alexeev, Borisov) Fix n and $\epsilon > 0$. The family of all Fano varieties of dimension n and log discrepancy at least $\epsilon > 0$ is bounded.
Conjecture: (Borisov, Alexeev, Borisov) Fix n and $\epsilon > 0$. The family of all Fano varieties of dimension n and log discrepancy at least $\epsilon > 0$ is bounded.

- It has long been realised that this conjecture implies many other conjectures, such as ACC for the log canonical threshold and Batyrev’s conjecture, to do with the cone of nef curves.
Conjecture: (Borisov, Alexeev, Borisov) Fix n and $\epsilon > 0$. The family of all Fano varieties of dimension n and log discrepancy at least $\epsilon > 0$ is bounded.

- It has long been realised that this conjecture implies many other conjectures, such as ACC for the log canonical threshold and Batyrev’s conjecture, to do with the cone of nef curves.

Question: Perhaps one can push birational boundedness methods to prove some of these conjectures, even the BAB conjecture?
Conjecture: (Borisov, Alexeev, Borisov) Fix n and $\epsilon > 0$. The family of all Fano varieties of dimension n and log discrepancy at least $\epsilon > 0$ is bounded.

- It has long been realised that this conjecture implies many other conjectures, such as ACC for the log canonical threshold and Batyrev’s conjecture, to do with the cone of nef curves.

Question: Perhaps one can push birational boundedness methods to prove some of these conjectures, even the BAB conjecture?

Question: Perhaps one can prove termination of flips for $K_X + \Delta$ Kawamata log terminal and Δ big?