Birational geometry and moduli spaces of varieties of general type

James McKernan

UCSD
Birational classification

- Roughly speaking varieties come in three types:
Birational classification

- Roughly speaking varieties come in three types:
 - K_X negative: \mathbb{P}^1, del Pezzos, low degree in \mathbb{P}^n.
Birational classification

- Roughly speaking varieties come in three types:
 - K_X negative: \mathbb{P}^1, del Pezzos, low degree in \mathbb{P}^n.
 - Quite rare; relatively simple geometry; explicit classification is sometimes feasible.
Birational classification

Roughly speaking varieties come in three types:

- K_X negative: \mathbb{P}^1, del Pezzos, low degree in \mathbb{P}^n. Quite rare; relatively simple geometry; explicit classification is sometimes feasible.
- K_X zero: elliptic curves, K3, Calabi-Yau, HKM.
Roughly speaking varieties come in three types:

- K_X negative: \mathbb{P}^1, del Pezzos, low degree in \mathbb{P}^n.
 - Quite rare; relatively simple geometry; explicit classification is sometimes feasible.
- K_X zero: elliptic curves, K3, Calabi-Yau, HKM.
 - Rich geometry; are CY threefolds bounded? How is this related to bounding b_2 and b_3?
Roughly speaking varieties come in three types:

- K_X negative: \mathbb{P}^1, del Pezzos, low degree in \mathbb{P}^n.
- Quite rare; relatively simple geometry; explicit classification is sometimes feasible.
- K_X zero: elliptic curves, K3, Calabi-Yau, HKM.
- Rich geometry; are CY threefolds bounded? How is this related to bounding b_2 and b_3?
- K_X positive: curves $g \geq 2$, large degree in \mathbb{P}^n.
Birational classification

- Roughly speaking varieties come in three types:
 - K_X negative: \mathbb{P}^1, del Pezzos, low degree in \mathbb{P}^n.
 - Quite rare; relatively simple geometry; explicit classification is sometimes feasible.
 - K_X zero: elliptic curves, K3, Calabi-Yau, HKM.
 - Rich geometry; are CY threefolds bounded? How is this related to bounding b_2 and b_3?
 - K_X positive: curves $g \geq 2$, large degree in \mathbb{P}^n.
 - Form continuous families. Try to construct moduli spaces and investigate their geometry.
Birational classification

- Roughly speaking varieties come in three types:
 - \(K_X \) negative: \(\mathbb{P}^1 \), del Pezzos, low degree in \(\mathbb{P}^n \).
 - Quite rare; relatively simple geometry; explicit classification is sometimes feasible.
 - \(K_X \) zero: elliptic curves, K3, Calabi-Yau, HKM.
 - Rich geometry; are CY threefolds bounded? How is this related to bounding \(b_2 \) and \(b_3 \)?
 - \(K_X \) positive: curves \(g \geq 2 \), large degree in \(\mathbb{P}^n \).
 - Form continuous families. Try to construct moduli spaces and investigate their geometry.
 - \(K_X \) is a natural polarisation on a curve of \(g \geq 2 \). In general classification is a birational problem.
The moduli space \overline{M}_g of stable curves is one of the most heavily studied varieties in algebraic geometry. It has a very well behaved geometry:
The moduli space \overline{M}_g of stable curves is one of the most heavily studied varieties in algebraic geometry. It has a very well behaved geometry:

- it is integral; reduced and irreducible. In particular, every stable nodal curve can be smoothed.
The moduli space \overline{M}_g of stable curves is one of the most heavily studied varieties in algebraic geometry. It has a very well behaved geometry:

- it is integral; reduced and irreducible. In particular, every stable nodal curve can be smoothed.
- it is projective; proper and has an ample line bundle.
The moduli space \overline{M}_g of stable curves is one of the most heavily studied varieties in algebraic geometry. It has a very well behaved geometry:

- it is integral; reduced and irreducible. In particular, every stable nodal curve can be smoothed.
- it is projective; proper and has an ample line bundle.
- it has quotient singularities; even better it is globally the quotient of a smooth projective variety (ACV).
Moduli space of curves

The moduli space \overline{M}_g of stable curves is one of the most heavily studied varieties in algebraic geometry. It has a very well behaved geometry:

- it is integral; reduced and irreducible. In particular, every stable nodal curve can be smoothed.
- it is projective; proper and has an ample line bundle.
- it has quotient singularities; even better it is globally the quotient of a smooth projective variety (ACV).
- every pluricanonical form lifts to a resolution (even though \overline{M}_g is not canonical).
The moduli space \overline{M}_g of stable curves is one of the most heavily studied varieties in algebraic geometry. It has a very well behaved geometry:

- it is integral; reduced and irreducible. In particular, every stable nodal curve can be smoothed.
- it is projective; proper and has an ample line bundle.
- it has quotient singularities; even better it is globally the quotient of a smooth projective variety (ACV).
- every pluricanonical form lifts to a resolution (even though \overline{M}_g is not canonical).
- $K_{\overline{M}_g} + D$ is log canonical and ample, where D is the sum of the boundary divisors, $\partial\overline{M}_g = \overline{M}_g - M_g$.

Birational geometry and moduli spaces of varieties of general type – p. 3
New directions

- $\overline{M}_{g,n}$ the moduli space of stable curves of genus g with n marked points.
New directions

- $\overline{M}_{g,n}$ the moduli space of stable curves of genus g with n marked points.
- $\overline{M}_{g,n}(X, \beta)$ the moduli space of stable maps to a projective variety X.
New directions

- $\overline{M}_{g,n}$ the moduli space of stable curves of genus g with n marked points.
- $\overline{M}_{g,n}(X, \beta)$ the moduli space of stable maps to a projective variety X.
- Moduli of abelian varieties, moduli of vector bundles, Bridgeland stability conditions, moduli of Fanos with Kähler-Einstein metrics,
New directions

- $\overline{M}_{g,n}$ the moduli space of stable curves of genus g with n marked points.
- $\overline{M}_{g,n}(X, \beta)$ the moduli space of stable maps to a projective variety X.
- Moduli of abelian varieties, moduli of vector bundles, Bridgeland stability conditions, moduli of Fanos with Kähler-Einstein metrics,
- Moduli of varieties of general type of higher dimension. We will focus on this moduli space:
New directions

- $\overline{M}_{g,n}$ the moduli space of stable curves of genus g with n marked points.
- $\overline{M}_{g,n}(X, \beta)$ the moduli space of stable maps to a projective variety X.

- Moduli of abelian varieties, moduli of vector bundles, Bridgeland stability conditions, moduli of Fanos with Kähler-Einstein metrics,

- Moduli of varieties of general type of higher dimension. We will focus on this moduli space:
 - projective X, K_X is ample (canonically polarised).
New directions

- $\overline{M}_{g,n}$ the moduli space of stable curves of genus g with n marked points.
- $\overline{M}_{g,n}(X, \beta)$ the moduli space of stable maps to a projective variety X.
- Moduli of abelian varieties, moduli of vector bundles, Bridgeland stability conditions, moduli of Fanos with Kähler-Einstein metrics,
- Moduli of varieties of general type of higher dimension. We will focus on this moduli space:
 - projective X, K_X is ample (canonically polarised).
 - more generally log canonical pairs (X, Δ) such that $K_X + \Delta$ is ample (from \overline{M}_g to $\overline{M}_{g,n}$).
Gieseker showed that the set of smooth projective surfaces S of general type with fixed Hilbert polynomial $h(t) = \chi(S, \mathcal{O}_S(tK_S))$ is the set of closed point of a quasi-projective variety $\mathcal{M}(h)$.
Gieseker showed that the set of smooth projective surfaces S of general type with fixed Hilbert polynomial $h(t) = \chi(S, \mathcal{O}_S(tK_S))$ is the set of closed point of a quasi-projective variety $M(h)$.

The method of proof is quite delicate and based on Mumford’s Geometric Invariant Theory.
First results

- Gieseker showed that the set of smooth projective surfaces S of general type with fixed Hilbert polynomial $h(t) = \chi(S, \mathcal{O}_S(tK_S))$ is the set of closed point of a quasi-projective variety $\mathcal{M}(h)$.

- The method of proof is quite delicate and based on Mumford’s Geometric Invariant Theory.

- Viehweg generalised this to smooth projective varieties with ample canonical divisor K_X.
First results

- Gieseker showed that the set of smooth projective surfaces \mathcal{S} of general type with fixed Hilbert polynomial $h(t) = \chi(\mathcal{S}, \mathcal{O}_S(tK_S))$ is the set of closed point of a quasi-projective variety $\mathcal{M}(h)$.

- The method of proof is quite delicate and based on Mumford’s Geometric Invariant Theory.

- Viehweg generalised this to smooth projective varieties with ample canonical divisor K_X.

- The focus of the construction moves away from GIT.
Gieseker showed that the set of smooth projective surfaces S of general type with fixed Hilbert polynomial $h(t) = \chi(S, \mathcal{O}_S(tK_S))$ is the set of closed point of a quasi-projective variety $\mathcal{M}(h)$.

The method of proof is quite delicate and based on Mumford’s Geometric Invariant Theory.

Viehweg generalised this to smooth projective varieties with ample canonical divisor K_X.

The focus of the construction moves away from GIT.

Viehweg’s results apply to singular projective varieties with ample canonical divisor and rational Gorenstein singularities ($= \text{canonical} + K_X \text{ Cartier}$).
First results

- Gieseker showed that the set of smooth projective surfaces S of general type with fixed Hilbert polynomial $h(t) = \chi(S, \mathcal{O}_S(tK_S))$ is the set of closed point of a quasi-projective variety $M(h)$.
- The method of proof is quite delicate and based on Mumford’s Geometric Invariant Theory.
- Viehweg generalised this to smooth projective varieties with ample canonical divisor K_X.
- The focus of the construction moves away from GIT.
- Viehweg’s results apply to singular projective varieties with ample canonical divisor and rational Gorenstein singularities ($= \text{canonical} + K_X \text{ Cartier}$).
- Call this the smooth case.
Murphy’s law

- Vakil showed that these moduli spaces satisfy Murphy’s law:
Vakil showed that these moduli spaces satisfy Murphy’s law:

Fix any scheme Z of finite type over $\text{Spec } \mathbb{Z}$. There is a moduli space of smooth projective surfaces with very ample canonical divisor which is locally (in the smooth topology) isomorphic to Z. In particular:
Vakil showed that these moduli spaces satisfy Murphy’s law:

Fix any scheme Z of finite type over $\text{Spec } \mathbb{Z}$. There is a moduli space of smooth projective surfaces with very ample canonical divisor which is locally (in the smooth topology) isomorphic to Z. In particular:

- The moduli space has arbitrarily many components: $Z = \text{Spec } \mathbb{Z}[x, y]/\langle (x - y)(x - 2y)(x - 3y) \ldots \rangle$.
Vakil showed that these moduli spaces satisfy Murphy’s law:

Fix any scheme Z of finite type over $\text{Spec } \mathbb{Z}$. There is a moduli space of smooth projective surfaces with very ample canonical divisor which is locally (in the smooth topology) isomorphic to Z. In particular:

- The moduli space has arbitrarily many components: $Z = \text{Spec } \mathbb{Z}[x, y]/\langle (x - y)(x - 2y)(x - 3y) \ldots \rangle$.
- The moduli space is non-reduced: $Z = \text{Spec } \mathbb{Z}[x]/\langle x^n \rangle$.
Vakil showed that these moduli spaces satisfy Murphy’s law:

Fix any scheme Z of finite type over $\text{Spec } \mathbb{Z}$. There is a moduli space of smooth projective surfaces with very ample canonical divisor which is locally (in the smooth topology) isomorphic to Z. In particular:

- The moduli space has arbitrarily many components:
 $$Z = \text{Spec } \mathbb{Z}[x, y]/\langle(x - y)(x - 2y)(x - 3y) \ldots \rangle.$$

- The moduli space is non-reduced:
 $$Z = \text{Spec } \mathbb{Z}[x]/\langle x^n \rangle.$$

- The moduli space has arbitrarily bad singularities.
Vakil showed that these moduli spaces satisfy **Murphy’s law**:

- Fix any scheme Z of finite type over $\text{Spec } \mathbb{Z}$. There is a moduli space of smooth projective surfaces with very ample canonical divisor which is locally (in the smooth topology) isomorphic to Z. In particular:
 - The moduli space has arbitrarily many components: $Z = \text{Spec } \mathbb{Z}[x, y]/\langle (x - y)(x - 2y)(x - 3y) \ldots \rangle$.
 - The moduli space is non-reduced: $Z = \text{Spec } \mathbb{Z}[x]/\langle x^n \rangle$.
 - The moduli space has arbitrarily bad singularities.

Moral: we should expect many complications in higher dimensions.
Construction of \mathcal{M}_g

- Let’s first review the construction of \mathcal{M}_g.
Let’s first review the construction of \(\mathcal{M}_g \).

Every smooth curve \(C \) of genus \(g \geq 2 \) is embedded in \(\mathbb{P}^{5g-6} \) by the linear system \(|3K_C| \) as a curve of degree \(6g - 6 \).
Construction of \mathcal{M}_g

- Let’s first review the construction of \mathcal{M}_g.
- Every smooth curve C of genus $g \geq 2$ is embedded in \mathbb{P}^{5g-6} by the linear system $|3K_C|$ as a curve of degree $6g - 6$.
- The family of all curves of degree $6g - 6$ in \mathbb{P}^{5g-6} is a quasi-projective scheme, using the Hilbert scheme (Grothendieck).
Construction of \mathcal{M}_g

- Let’s first review the construction of \mathcal{M}_g.
- Every smooth curve C of genus $g \geq 2$ is embedded in \mathbb{P}^{5g-6} by the linear system $|3K_C|$ as a curve of degree $6g - 6$.
- The family of all curves of degree $6g - 6$ in \mathbb{P}^{5g-6} is a quasi-projective scheme, using the Hilbert scheme (Grothendieck).
- The family of all smooth curves embedded by $|3K_C|$ is a locally closed subset.
Let’s first review the construction of \mathcal{M}_g.

Every smooth curve C of genus $g \geq 2$ is embedded in \mathbb{P}^{5g-6} by the linear system $|3K_C|$ as a curve of degree $6g - 6$.

The family of all curves of degree $6g - 6$ in \mathbb{P}^{5g-6} is a quasi-projective scheme, using the Hilbert scheme (Grothendieck).

The family of all smooth curves embedded by $|3K_C|$ is a locally closed subset.

(Mumford) Realise \mathcal{M}_g as a GIT quotient by the action of $\text{PGL}(5g - 5)$.
Take a GIT quotient of the space of 5-canonically embedded curves of genus g in \mathbb{P}^{9g-10}.
Construction of \overline{M}_g

- Take a GIT quotient of the space of 5-canonically embedded curves of genus g in \mathbb{P}^{9g-10}.
- Identifying the isomorphism classes of points of the boundary $\partial \overline{M}_g = \overline{M}_g - \mathcal{M}_g$ is very subtle.
Construction of \overline{M}_g

- Take a GIT quotient of the space of 5-canonically embedded curves of genus g in \mathbb{P}^{9g-10}.
- Identifying the isomorphism classes of points of the boundary $\partial\overline{M}_g = \overline{M}_g - M_g$ is very subtle.
- A delicate and beautiful argument that seems next to impossible to generalise to higher dimensions.
Construction of \overline{M}_g

- Take a GIT quotient of the space of 5-canonically embedded curves of genus g in \mathbb{P}^{9g-10}.
- Identifying the isomorphism classes of points of the boundary $\partial \overline{M}_g = \overline{M}_g - M_g$ is very subtle.
- A delicate and beautiful argument that seems next to impossible to generalise to higher dimensions.
- Closed points of \overline{M}_g correspond to stable curves (stable in the sense of both semi-stable reduction and GIT):
Construction of \overline{M}_g

- Take a GIT quotient of the space of 5-canonically embedded curves of genus g in \mathbb{P}^{9g-10}.
- Identifying the isomorphism classes of points of the boundary $\partial \overline{M}_g = \overline{M}_g - M_g$ is very subtle.
- A delicate and beautiful argument that seems next to impossible to generalise to higher dimensions.
- Closed points of \overline{M}_g correspond to stable curves (stable in the sense of both semi-stable reduction and GIT):
 - C is nodal and K_C is ample.
Construction of \overline{M}_g

- Take a GIT quotient of the space of 5-canonically embedded curves of genus g in \mathbb{P}^{9g-10}.
- Identifying the isomorphism classes of points of the boundary $\partial \overline{M}_g = \overline{M}_g - M_g$ is very subtle.
- A delicate and beautiful argument that seems next to impossible to generalise to higher dimensions.
- Closed points of \overline{M}_g correspond to stable curves (stable in the sense of both semi-stable reduction and GIT):
 - C is nodal and K_C is ample.
 - Equivalently: C is nodal and $\text{Aut}(C)$ is finite.
Semi-stable reduction for curves

- Start with a family of curves $S \rightarrow \mathbb{D}$ over the disc, with a singular central fibre.
Semi-stable reduction for curves

- Start with a family of curves $S
ightarrow \mathbb{D}$ over the disc, with a singular central fibre.
- Base change $z
ightarrow z^m$, $\mathbb{D}
ightarrow \mathbb{D}$, so that there is a desingularisation S' of $S \times \mathbb{D}$ with reduced fibres over \mathbb{D}.
Semi-stable reduction for curves

- Start with a family of curves $S \rightarrow \mathbb{D}$ over the disc, with a singular central fibre.

- Base change $z \rightarrow z^m$, $\mathbb{D} \rightarrow \mathbb{D}$, so that there is a desingularisation S' of $S \times \mathbb{D}$ with reduced fibres over \mathbb{D}.

- Contract $S' \rightarrow T'$ all -1-curves in the central fibre (run $K_{S'}$-MMP). $K_{T'}$ is nef and T' is smooth.
Semi-stable reduction for curves

- Start with a family of curves $S \rightarrow \mathbb{D}$ over the disc, with a singular central fibre.
- Base change $z \rightarrow z^m$, $\mathbb{D} \rightarrow \mathbb{D}$, so that there is a desingularisation S' of $S \times \mathbb{D}$ with reduced fibres over \mathbb{D}.
- Contract $S' \rightarrow T'$ all -1-curves in the central fibre (run $K_{S'}$-MMP). $K_{T'}$ is nef and T' is smooth.
- Contract $T' \rightarrow T$ all -2-curves. K_T is ample and T has canonical (aka ADE, Du Val) singularities.
Semi-stable reduction for curves

- Start with a family of curves $S \rightarrow \mathbb{D}$ over the disc, with a singular central fibre.

- Base change $z \rightarrow z^m$, $\mathbb{D} \rightarrow \mathbb{D}$, so that there is a desingularisation S' of $S \times \mathbb{D}$ with reduced fibres over \mathbb{D}.

- Contract $S' \rightarrow T'$ all -1-curves in the central fibre (run $K_{S'}$-MMP). $K_{T'}$ is nef and T' is smooth.

- Contract $T' \rightarrow T$ all -2-curves. K_T is ample and T has canonical (aka ADE, Du Val) singularities.

- Note that T is the relative canonical model of S'.
Semi-stable reduction for curves

- Start with a family of curves $S \to \mathbb{D}$ over the disc, with a singular central fibre.

- Base change $z \to z^m$, $\mathbb{D} \to \mathbb{D}$, so that there is a desingularisation S' of $S \times \mathbb{D}$ with reduced fibres over \mathbb{D}.

- Contract $S' \to T'$ all -1-curves in the central fibre (run $K_{S'}$-MMP). $K_{T'}$ is nef and T' is smooth.

- Contract $T' \to T$ all -2-curves. K_T is ample and T has canonical (aka ADE, Du Val) singularities.

- Note that T is the relative canonical model of S'.

- This implies uniqueness of semi-stable reduction and highlights the significance of general type.
New approach

Kollár & Shepherd-Barron: eliminate use of GIT, use semi-stable reduction and the MMP instead.
New approach

- Kollár & Shepherd-Barron: eliminate use of GIT, use semi-stable reduction and the MMP instead.
- This program raises many technical and interesting problems: many contributions from many sources.
New approach

- Kollár & Shepherd-Barron: eliminate use of GIT, use semi-stable reduction and the MMP instead.
- This program raises many technical and interesting problems: many contributions from many sources.
- First big success: Alexeev proved boundedness for surfaces. This completed (for the most part) the construction of the moduli space of surfaces.
New approach

- Kollár & Shepherd-Barron: eliminate use of GIT, use semi-stable reduction and the MMP instead.
- This program raises many technical and interesting problems: many contributions from many sources.
- First big success: Alexeev proved boundedness for surfaces. This completed (for the most part) the construction of the moduli space of surfaces.
- There are now two directions in which to head.
New approach

- Kollár & Shepherd-Barron: eliminate use of GIT, use semi-stable reduction and the MMP instead.

- This program raises many technical and interesting problems: many contributions from many sources.

- First big success: Alexeev proved boundedness for surfaces. This completed (for the most part) the construction of the moduli space of surfaces.

- There are now two directions in which to head.
 - Study explicit examples of moduli of surfaces of general type—reveals extremely rich geometry.
New approach

- Kollár & Shepherd-Barron: eliminate use of GIT, use semi-stable reduction and the MMP instead.
- This program raises many technical and interesting problems: many contributions from many sources.
- First big success: Alexeev proved boundedness for surfaces. This completed (for the most part) the construction of the moduli space of surfaces.
- There are now two directions in which to head.
 - Study explicit examples of moduli of surfaces of general type—reveals extremely rich geometry.
 - Try to generalise these results to all dimensions.
New approach

- Kollár & Shepherd-Barron: eliminate use of GIT, use semi-stable reduction and the MMP instead.
- This program raises many technical and interesting problems: many contributions from many sources.
- First big success: Alexeev proved boundedness for surfaces. This completed (for the most part) the construction of the moduli space of surfaces.
- There are now two directions in which to head.
 - Study explicit examples of moduli of surfaces of general type—reveals extremely rich geometry.
 - Try to generalise these results to all dimensions.
- Focus on the latter problem in these lectures.
Interlude: Explicit Examples

- Hacking: plane curves C of degree $d > 3$.
Interlude: Explicit Examples

- **Hacking:** plane curves C of degree $d > 3$.
- Look at the component of the moduli space of log pairs containing $(\mathbb{P}^2, \frac{3+\epsilon}{d} C')$ where $\epsilon > 0$ is sufficiently small (float the coefficients).
Hacking: plane curves C of degree $d > 3$.

Look at the component of the moduli space of log pairs containing $(\mathbb{P}^2, \frac{(3+\epsilon)}{d} C')$ where $\epsilon > 0$ is sufficiently small (float the coefficients).

Keel, Hacking, Tevelev: cubic surfaces S.
Interlude: Explicit Examples

- **Hacking:** plane curves C of degree $d > 3$.
- Look at the component of the moduli space of log pairs containing $(\mathbb{P}^2, \frac{(3+\epsilon)}{d}C')$ where $\epsilon > 0$ is sufficiently small (float the coefficients).
- **Keel, Hacking, Tevelev:** cubic surfaces S.
- Look at the component of the moduli space of log pairs containing $(S, L_1 + L_2 + \cdots + L_{27})$, where L_1, L_2, \ldots, L_{27} are the 27 lines on the cubic surface.
Interlude: Explicit Examples

- **Hacking**: plane curves C of degree $d > 3$.
- Look at the component of the moduli space of log pairs containing $(\mathbb{P}^2, \frac{(3+\epsilon)}{d} C')$ where $\epsilon > 0$ is sufficiently small (float the coefficients).
- **Keel, Hacking, Tevelev**: cubic surfaces S.
- Look at the component of the moduli space of log pairs containing $(S, L_1 + L_2 + \cdots + L_{27})$, where L_1, L_2, \ldots, L_{27} are the 27 lines on the cubic surface.
- **Note**: $K_S + L_1 + L_2 + \cdots + L_{27} = -8K_S$ is ample.
Hacking: plane curves C of degree $d > 3$.

Look at the component of the moduli space of log pairs containing $(\mathbb{P}^2, \frac{(3+\epsilon)d}{d}C')$ where $\epsilon > 0$ is sufficiently small (float the coefficients).

Keel, Hacking, Tevelev: cubic surfaces S.

Look at the component of the moduli space of log pairs containing $(S, L_1 + L_2 + \cdots + L_{27})$, where L_1, L_2, \ldots, L_{27} are the 27 lines on the cubic surface.

Note $K_S + L_1 + L_2 + \cdots + L_{27} = -8K_S$ is ample.

Sekiguchi: A cubic surface is determined by the j-invariants of all intersections of any line with any other four lines.
Construction of smooth moduli space

- (Kollár and Karu) Start with a smooth projective variety \(Y \) of general type \((K_Y \text{ is big}) \) of dim \(n \):
Construction of smooth moduli space

- (Kollár and Karu) Start with a smooth projective variety Y of general type (K_Y is big) of dim n:

- **Theorem:** (BCHM, Siu) The canonical ring $R(Y, K_Y) = \bigoplus_{m \in \mathbb{N}} H^0(Y, \mathcal{O}_Y(mK_Y))$ is finitely generated.
Construction of smooth moduli space

(Kollár and Karu) Start with a smooth projective variety Y of general type (K_Y is big) of dim n:

Theorem: (BCHM, Siu) The canonical ring $R(Y, K_Y) = \bigoplus_{m \in \mathbb{N}} H^0(Y, \mathcal{O}_Y(mK_Y))$ is finitely generated.

As a consequence every variety Y of general type is birational $\phi_{mK_Y} : Y \dashrightarrow X \subset \mathbb{P}^r$ to a variety X naturally embedded in \mathbb{P}^r, where K_X is ample and X has canonical singularities (Reid).
Construction of smooth moduli space

- (Kollár and Karu) Start with a smooth projective variety Y of general type (K_Y is big) of dim n:
 - **Theorem:** (BCHM, Siu) The canonical ring $R(Y, K_Y) = \bigoplus_{m \in \mathbb{N}} H^0(Y, \mathcal{O}_Y(mK_Y))$ is finitely generated.

- As a consequence every variety Y of general type is birational $\phi_{mK_Y} : Y \dashrightarrow X \subset \mathbb{P}^r$ to a variety X naturally embedded in \mathbb{P}^r, where K_X is ample and X has canonical singularities (Reid).

- **Theorem:** (Hacon-, Takayama, Tsuji) Fix n. There is a positive integer m_0 such that ϕ_{mK_Y} is birational for all $m \geq m_0$.

Birational geometry and moduli spaces of varieties of general type – p. 12
Construction of smooth moduli space

(Kollár and Karu) Start with a smooth projective variety Y of general type (K_Y is big) of dim n:

Theorem: (BCHM, Siu) The canonical ring $R(Y, K_Y) = \bigoplus_{m \in \mathbb{N}} H^0(Y, \mathcal{O}_Y(mK_Y))$ is finitely generated.

As a consequence every variety Y of general type is birational $\phi_{mK_Y}: Y \dashrightarrow X \subset \mathbb{P}^r$ to a variety X naturally embedded in \mathbb{P}^r, where K_X is ample and X has canonical singularities (Reid).

Theorem: (Hacon-, Takayama, Tsuji) Fix n. There is a positive integer m_0 such that ϕ_{mK_Y} is birational for all $m \geq m_0$.

For curves $m_0 = 3$ works, surfaces $m_0 = 5$.
Suppose that we fix the volume of K_Y,

$$d = \text{vol}(Y, K_Y) = \limsup_{m \to \infty} \frac{n! H^0(Y, \mathcal{O}_Y(mK_Y))}{m^n}.$$
Suppose that we fix the volume of K_Y,

$$d = \text{vol}(Y, K_Y) = \limsup_{m \to \infty} \frac{n!H^0(Y, \mathcal{O}_Y(mK_Y))}{m^n}.$$

Fix $m \geq m_0$. The degree of X in \mathbb{P}^r is at most $m^n d$.
Suppose that we fix the volume of K_Y,

$$d = \text{vol}(Y, K_Y) = \lim_{m \to \infty} \sup \frac{n! H^0(Y, O_Y(mK_Y))}{m^n}.$$

Fix $m \geq m_0$. The degree of X in \mathbb{P}^r is at most $m^n d$.

Therefore $r \leq m^n d + n$.

Birational geometry and moduli spaces of varieties of general type – p. 13
Suppose that we fix the volume of K_Y,

$$d = \text{vol}(Y, K_Y) = \lim_{m \to \infty} \sup \frac{n!H^0(Y, \mathcal{O}_Y(mK_Y))}{m^n}.$$

Fix $m \geq m_0$. The degree of X in \mathbb{P}^r is at most $m^n d$.

Therefore $r \leq m^n d + n$.

In particular the family of all canonically polarised varieties of dimension n such that $K^n_X = d$ is a bounded family.
Suppose that we fix the volume of K_Y,

$$d = \text{vol}(Y, K_Y) = \limsup_{m \to \infty} \frac{n!H^0(Y, \mathcal{O}_Y(mK_Y))}{m^n}.$$

Fix $m \geq m_0$. The degree of X in \mathbb{P}^r is at most $m^n d$.

Therefore $r \leq m^n d + n$.

In particular the family of all canonically polarised varieties of dimension n such that $K^n_X = d$ is a bounded family.

For this we use the Chow variety, not the Hilbert scheme.
Degree versus Hilbert polynomial

Suppose that we fix the volume of K_Y,

$$d = \text{vol}(Y, K_Y) = \limsup_{m \to \infty} \frac{n!H^0(Y, \mathcal{O}_Y(mK_Y))}{m^n}.$$

Fix $m \geq m_0$. The degree of X in \mathbb{P}^r is at most m^nd.

Therefore $r \leq m^nd + n$.

In particular the family of all canonically polarised varieties of dimension n such that $K^n_X = d$ is a bounded family.

For this we use the Chow variety, not the Hilbert scheme.

Just need to fix the degree d and the dimension n.
Birational boundedness

It follows that the family of all smooth projective varieties Y of dimension n and volume d is birationally bounded.
It follows that the family of all smooth projective varieties \(Y \) of dimension \(n \) and volume \(d \) is birationally bounded.

We may find a family \(\mathcal{Y} \rightarrow U \) of varieties such that every smooth projective variety \(Y \) of dimension \(n \) and volume \(d \) is birational to at least one fibre.
It follows that the family of all smooth projective varieties Y of dimension n and volume d is \textbf{birationally bounded}.

We may find a family $\mathcal{Y} \rightarrow U$ of varieties such that every smooth projective variety Y of dimension n and volume d is birational to at least one fibre.

Note that in the definition of boundedness, we do not a priori require that every fibre of \mathcal{Y} is a variety of general type of volume d.
Birational boundedness

- It follows that the family of all smooth projective varieties Y of dimension n and volume d is birationally bounded.
- We may find a family $\mathcal{Y} \rightarrow U$ of varieties such that every smooth projective variety Y of dimension n and volume d is birational to at least one fibre.
- Note that in the definition of boundedness, we do not a priori require that every fibre of \mathcal{Y} is a variety of general type of volume d.
- Use the moduli space of canonically polarised varieties X (the smooth case) to give a birational classification of smooth projective varieties Y of general type.
Semi-stable reduction

- An **alteration** is a proper generically finite surjective morphism $V \longrightarrow U$.
Semi-stable reduction

- **An alteration** is a proper generically finite surjective morphism $V \rightarrow U$.

- **Theorem:** (Abramovich-Karu) Given a morphism $\mathcal{Y} \rightarrow U$ whose generic fibre is geometrically irreducible then there is an alteration $V \rightarrow U$ and an alteration $\mathcal{X} \rightarrow \mathcal{Y}'$ of the main component \mathcal{Y}' of $\mathcal{Y} \times_U V$ such that $\mathcal{X} \rightarrow V$ has reduced fibres and \mathcal{X} is canonical.
Semi-stable reduction

- An alteration is a proper generically finite surjective morphism $V \longrightarrow U$.

- Theorem: (Abramovich-Karu) Given a morphism $\mathcal{Y} \longrightarrow U$ whose generic fibre is geometrically irreducible then there is an alteration $V \longrightarrow U$ and an alteration $\mathcal{X} \longrightarrow \mathcal{Y}'$ of the main component \mathcal{Y}' of $\mathcal{Y} \times_U V$ such that $\mathcal{X} \longrightarrow V$ has reduced fibres and \mathcal{X} is canonical.

- Choose V smooth and \mathcal{X} with quotient singularities.
Semi-stable reduction

- **An alteration** is a proper generically finite surjective morphism $V \to U$.

- **Theorem:** (Abramovich-Karu) Given a morphism $\mathcal{Y} \to U$ whose generic fibre is geometrically irreducible then there is an alteration $V \to U$ and an alteration $\mathcal{X} \to \mathcal{Y}'$ of the main component \mathcal{Y}' of $\mathcal{Y} \times V$ such that $\mathcal{X} \to V$ has reduced fibres and \mathcal{X} is canonical.

- Choose V smooth and \mathcal{X} with quotient singularities.

- So we may assume we have a semi-stable family of projective varieties which includes every variety of dimension n and volume d.
Deformation invariance

- By taking the closure in the Chow variety we may assume (from the beginning) that U is projective.
Deformation invariance

- By taking the closure in the Chow variety we may assume (from the beginning) that U is projective.

- **Theorem:** (Siu) If $\mathcal{Y} \longrightarrow U$ is a smooth projective morphism then for all $m \in \mathbb{N}$, $h^0(X_t, \mathcal{O}_{X_t}(mK_{X_t}))$ are deformation invariants, where X_t are the fibres.
Deformation invariance

- By taking the closure in the Chow variety we may assume (from the beginning) that U is projective.

- **Theorem**: (Siu) If $\mathcal{Y} \to U$ is a smooth projective morphism then for all $m \in \mathbb{N}$, $h^0(X_t, \mathcal{O}_{X_t}(mK_{X_t}))$ are deformation invariants, where X_t are the fibres.

- So we may assume that the Hilbert polynomial is constant.
Take the relative canonical model of $\pi : Y \longrightarrow U$

\[\mathcal{X} = \text{Proj}_U \left(\bigoplus_{m \in \mathbb{N}} \pi_* \mathcal{O}_Y(mK_Y) \right) \longrightarrow U. \]
Relative canonical model

- Take the relative canonical model of $\pi : \mathcal{Y} \to U$

$$\mathcal{X} = \text{Proj}_U \left(\bigoplus_{m \in \mathbb{N}} \pi_* \mathcal{O}_\mathcal{Y}(mK_\mathcal{Y}) \right) \to U.$$

- Note that K_X is ample for every fibre $X = X_t$.

Relative canonical model

- Take the relative canonical model of $\pi: \mathcal{Y} \rightarrow U$

$$\mathcal{X} = \text{Proj}_U \left(\bigoplus_{m \in \mathbb{N}} \pi_* \mathcal{O}_\mathcal{Y}(mK_\mathcal{Y}) \right) \rightarrow U.$$

- Note that K_X is ample for every fibre $X = X_t$.

- By a result of Keel and Mori we may assume that the quotient is represented by an algebraic space \mathcal{M}.
Take the **relative canonical model** of $\pi : \mathcal{Y} \rightarrow U$

$$\mathcal{X} = \text{Proj}_U \left(\bigoplus_{m \in \mathbb{N}} \pi_* \mathcal{O}_\mathcal{Y}(mK_\mathcal{Y}) \right) \rightarrow U.$$

Note that K_X is ample for every fibre $X = X_t$.

By a result of Keel and Mori we may assume that the quotient is represented by an algebraic space \mathcal{M}.

Kollár gave a general criteria for projectivity of \mathcal{M}.
Take the relative canonical model of $\pi : \mathcal{Y} \to U$

$$\mathcal{X} = \text{Proj}_U \left(\bigoplus_{m \in \mathbb{N}} \pi_* \mathcal{O}_\mathcal{Y}(mK_\mathcal{Y}) \right) \to U.$$

Note that K_X is ample for every fibre $X = X_t$.

By a result of Keel and Mori we may assume that the quotient is represented by an algebraic space \mathcal{M}.

Kollár gave a general criteria for projectivity of \mathcal{M}.

Fujino verified this criteria in this case.
Take the relative canonical model of \(\pi : \mathcal{Y} \rightarrow U \)

\[
\mathcal{X} = \text{Proj}_U \left(\bigoplus_{m \in \mathbb{N}} \pi_* \mathcal{O}_Y(mK_Y) \right) \rightarrow U.
\]

Note that \(K_X \) is ample for every fibre \(X = X_t \).

By a result of Keel and Mori we may assume that the quotient is represented by an algebraic space \(\mathcal{M} \).

Kollár gave a general criteria for projectivity of \(\mathcal{M} \).

Fujino verified this criteria in this case.

Kovács & Patakfalvi generalised to log pairs.
What is missing?

- We have not given the moduli space a scheme structure.
What is missing?

- We have not given the moduli space a scheme structure.
- Equivalently we have not defined a functor.
What is missing?

- We have not given the moduli space a scheme structure.
- Equivalently we have not defined a functor.
- The problem is that there are families of non-normal varieties which cannot be smoothed, so that there are components of the moduli space whose general member corresponds to a non-normal variety.
What is missing?

- We have not given the moduli space a scheme structure.

- Equivalently we have not defined a functor.

- The problem is that there are families of non-normal varieties which cannot be smoothed, so that there are components of the moduli space whose general member corresponds to a non-normal variety.

- These components might intersect the components (the smooth case) whose general points correspond to normal varieties.
What is missing?

- We have not given the moduli space a scheme structure.
- Equivalently we have not defined a functor.
- The problem is that there are families of non-normal varieties which cannot be smoothed, so that there are components of the moduli space whose general member corresponds to a non-normal variety.
- These components might intersect the components (the smooth case) whose general points correspond to normal varieties.
- We have to include all of the components if we want a reasonable scheme structure.
What is missing?

- We have not given the moduli space a scheme structure.
- Equivalently we have not defined a functor.
- The problem is that there are families of non-normal varieties which cannot be smoothed, so that there are components of the moduli space whose general member corresponds to a non-normal variety.
- These components might intersect the components (the smooth case) whose general points correspond to normal varieties.
- We have to include all of the components if we want a reasonable scheme structure.
- Then we get a reasonable deformation theory.
Surfaces with small invariants

- There has been considerable interest in constructing smooth projective surfaces of general type with \(p_g = 0 \) and small fundamental group.
Surfaces with small invariants

- There has been considerable interest in constructing smooth projective surfaces of general type with $p_g = 0$ and small fundamental group.

- Start with an explicit rational surface S_0 with quotient singularities such that K_{S_0} is ample and the fundamental group of the smooth locus is small.
Surfaces with small invariants

- There has been considerable interest in constructing smooth projective surfaces of general type with $p_g = 0$ and small fundamental group.
- Start with an explicit rational surface S_0 with quotient singularities such that K_{S_0} is ample and the fundamental group of the smooth locus is small.
- Check that there is a smoothing S of S_0 to a smooth projective surface S such that K_S is ample.
Surfaces with small invariants

- There has been considerable interest in constructing smooth projective surfaces of general type with $p_g = 0$ and small fundamental group.

- Start with an explicit rational surface S_0 with quotient singularities such that K_{S_0} is ample and the fundamental group of the smooth locus is small.

- Check that there is a smoothing S of S_0 to a smooth projective surface S such that K_S is ample.

- Construct new Campedelli surfaces S, smooth projective surfaces, K_S ample, with (Y. Lee, J. Park): $K_S^2 = 2$ and $\pi_1(S) \in \{0, \mathbb{Z}_2, \mathbb{Z}_4\}$.
Surfaces with small invariants

- There has been considerable interest in constructing smooth projective surfaces of general type with $p_g = 0$ and small fundamental group.

- Start with an explicit rational surface S_0 with quotient singularities such that K_{S_0} is ample and the fundamental group of the smooth locus is small.

- Check that there is a smoothing S of S_0 to a smooth projective surface S such that K_S is ample.

- Construct new Campedelli surfaces S, smooth projective surfaces, K_S ample, with (Y. Lee, J. Park): $K_S^2 = 2$ and $\pi_1(S) \in \{0, \mathbb{Z}_2, \mathbb{Z}_4\}$.

- Non-trivial deformation theory, \mathbb{Q}-Gorenstein deformation (Wahl).
What to parametrise?

- A big hint is given by the construction we have just given:
What to parametrise?

- A big hint is given by the construction we have just given:
- log pairs (X, Δ) such that $K_X + \Delta$ is ample.
What to parametrise?

- A big hint is given by the construction we have just given:
 - log pairs \((X, \Delta)\) such that \(K_X + \Delta\) is ample.
- We must allow non-normal singularities (consider the case of nodal curves and what the fibres of a semi-stable reduction look like).
What to parametrise?

- A big hint is given by the construction we have just given:
 - log pairs \((X, \Delta)\) such that \(K_X + \Delta\) is ample.
- We must allow non-normal singularities (consider the case of nodal curves and what the fibres of a semi-stable reduction look like).
- we work with semi log canonical pairs \((X, \Delta)\).
What to parametrise?

- A big hint is given by the construction we have just given:
 - log pairs (X, Δ) such that $K_X + \Delta$ is ample.
- We must allow non-normal singularities (consider the case of nodal curves and what the fibres of a semi-stable reduction look like).
- we work with semi log canonical pairs (X, Δ).
- X has nodal singularities in codimension one and the normalisation $(X^\nu, D + \Delta^\nu)$ is log canonical, where D is the double locus.
What to parametrise?

- A big hint is given by the construction we have just given:
 - log pairs \((X, \Delta)\) such that \(K_X + \Delta\) is ample.
- We must allow non-normal singularities (consider the case of nodal curves and what the fibres of a semi-stable reduction look like).
- we work with semi log canonical pairs \((X, \Delta)\).
- \(X\) has nodal singularities in codimension one and the normalisation \((X^\nu, D + \Delta^\nu)\) is log canonical, where \(D\) is the double locus.
- the fibres of the relative canonical model are semi log canonical—part of the statement of adjunction.
Log canonical pairs \((X, \Delta)\)

- \((X, \Delta)\) is log smooth if \(X\) is smooth and \(\Delta\) has global normal crossings.
Log canonical pairs \((X, \Delta)\)

- \((X, \Delta)\) is log smooth if \(X\) is smooth and \(\Delta\) has global normal crossings.

- A log resolution \(\pi: Y \to X\) is a projective birational map s.t. \((Y, \Gamma = \tilde{\Delta} + E)\) is log smooth and \(E = \sum E_i\) supports an ample divisor over \(X\).
Log canonical pairs \((X, \Delta)\)

- \((X, \Delta)\) is **log smooth** if \(X\) is smooth and \(\Delta\) has global normal crossings.
- A **log resolution** \(\pi : Y \to X\) is a projective birational map s.t. \((Y, \Gamma = \tilde{\Delta} + E)\) is log smooth and \(E = \sum E_i\) supports an ample divisor over \(X\).
- We may write

\[
K_Y + \Gamma = \pi^*(K_X + \Delta) + \sum a_i E_i.
\]
Log canonical pairs \((X, \Delta)\)

- \((X, \Delta)\) is **log smooth** if \(X\) is smooth and \(\Delta\) has global normal crossings.

- A **log resolution** \(\pi: Y \rightarrow X\) is a projective birational map s.t. \((Y, \Gamma = \tilde{\Delta} + E)\) is log smooth and \(E = \sum E_i\) supports an ample divisor over \(X\).

- We may write

\[
K_Y + \Gamma = \pi^*(K_X + \Delta) + \sum a_i E_i.
\]

- \(a_i = a(E_i, X, \Delta)\) is the **log discrepancy of** \(E_i\).
Log canonical pairs \((X, \Delta)\)

- \((X, \Delta)\) is **log smooth** if \(X\) is smooth and \(\Delta\) has global normal crossings.
- A **log resolution** \(\pi : Y \rightarrow X\) is a projective birational map s.t. \((Y, \Gamma = \tilde{\Delta} + E)\) is log smooth and \(E = \sum E_i\) supports an ample divisor over \(X\).
- We may write

\[K_Y + \Gamma = \pi^*(K_X + \Delta) + \sum a_i E_i.\]

- \(a_i = a(E_i, X, \Delta)\) is the **log discrepancy** of \(E_i\).
- \(a = \inf_{i,Y} a_i\) is the log discrepancy of \((X, \Delta)\).
- \((X, \Delta)\) is **log canonical** if \(a \geq 0\).
Properties of log canonical pairs

If \((X, \Delta)\) is log canonical then

\[
H^0(X, \mathcal{O}_X(m(K_X + \Delta))) = H^0(Y, \mathcal{O}_Y(m(K_Y + \Gamma))).
\]

This is the essential property of log canonical pairs.
Properties of log canonical pairs

- If \((X, \Delta)\) is log canonical then

\[H^0(X, \mathcal{O}_X(m(K_X + \Delta)))) = H^0(Y, \mathcal{O}_Y(m(K_Y + \Gamma)))) \]

This is the essential property of log canonical pairs.

- \((X, \Delta)\) is klt if \(\lfloor \Delta \rfloor = 0\) and \(a > 0\).
Properties of log canonical pairs

- If \((X, \Delta)\) is log canonical then
 \[
 H^0(X, \mathcal{O}_X(m(K_X + \Delta))) = H^0(Y, \mathcal{O}_Y(m(K_Y + \Gamma))).
 \]

 This is the essential property of log canonical pairs.

- \((X, \Delta)\) is klt if \(\lfloor \Delta \rfloor = 0\) and \(a > 0\).

- Kawamata log terminal pairs are well-behaved and most of the standard results about smooth projective varieties extend to klt pairs.
If \((X, \Delta)\) is log canonical then

\[H^0(X, \mathcal{O}_X(m(K_X + \Delta))) = H^0(Y, \mathcal{O}_Y(m(K_Y + \Gamma))). \]

This is the essential property of log canonical pairs.

\((X, \Delta)\) is klt if \(\lfloor \Delta \rfloor = 0\) and \(a > 0\).

Kawamata log terminal pairs are well-behaved and most of the standard results about smooth projective varieties extend to klt pairs.

Some of the basic results about log canonical pairs fail and we are ignorant of many of the rest.
Properties of log canonical pairs

- If (X, Δ) is log canonical then

$$H^0(X, \mathcal{O}_X(m(K_X+\Delta))) = H^0(Y, \mathcal{O}_Y(m(K_Y+\Gamma))).$$

This is the essential property of log canonical pairs.

- (X, Δ) is klt if $\lfloor \Delta \rfloor = 0$ and $a > 0$.

- Kawamata log terminal pairs are well-behaved and most of the standard results about smooth projective varieties extend to klt pairs.

- Some of the basic results about log canonical pairs fail and we are ignorant of many of the rest.

- We must work with log canonical pairs since the double locus always comes with coefficient one.