HWK #6, DUE WEDNESDAY 11/20

1. Let $p_1, p_2, \ldots, p_{n+2}$ and $q_1, q_2, \ldots, q_{n+2}$ be two sets of n+2 points in linear general position in \mathbb{P}^n . Show that there is a unique element of PGL(n+1) sending p_i to q_i .

2. Let K be an algebraically closed field. Show that, up to conjugacy, any element ϕ of PGL(2, K) is one of

(1) the identity,

(2)
$$z \longrightarrow az, a \in K^*$$
,

(3)
$$z \longrightarrow z+1$$
,

and that the three cases are distinguished by the number of fixed points; at least three; two; one.

3. Show that the twisted cubic is defined by the equations XW = YZ, $Y^2 = XZ$ and $Z^2 = YW$.

4. a) Show the intersection of any two of the quadrics above is the union of C and a line (in fact either a tangent line or a secant line, that is a line which meets C twice).

b) More generally, if $\lambda = [\lambda_0 : \lambda_1 : \lambda_2]$ is a point of \mathbb{P}^2 , let F_{λ} denote the quadratic polynomial

$$\lambda_0(Y^2 - XZ) + \lambda_1(XW - YZ) + \lambda_2(Z^2 - YW).$$

Show that if $\lambda \neq \mu$ then the zero locus of F_{λ} and F_{μ} is also the union of C and a line (again, in fact either a tangent or secant line).

5. Show that any set of points on a rational normal curve are in linear general position.