HWK \#6, DUE WEDNESDAY 11/20

1. Let $p_{1}, p_{2}, \ldots, p_{n+2}$ and $q_{1}, q_{2}, \ldots, q_{n+2}$ be two sets of $n+2$ points in linear general position in \mathbb{P}^{n}. Show that there is a unique element of $\operatorname{PGL}(n+1)$ sending p_{i} to q_{i}.
2. Let K be an algebraically closed field. Show that, up to conjugacy, any element ϕ of $\operatorname{PGL}(2, K)$ is one of
(1) the identity,
(2) $z \longrightarrow a z, a \in K^{*}$,
(3) $z \longrightarrow z+1$,
and that the three cases are distinguished by the number of fixed points; at least three; two; one.
3. Show that the twisted cubic is defined by the equations $X W=$ $Y Z, Y^{2}=X Z$ and $Z^{2}=Y W$.
4. a) Show the intersection of any two of the quadrics above is the union of C and a line (in fact either a tangent line or a secant line, that is a line which meets C twice).
b) More generally, if $\lambda=\left[\lambda_{0}: \lambda_{1}: \lambda_{2}\right]$ is a point of \mathbb{P}^{2}, let F_{λ} denote the quadratic polynomial

$$
\lambda_{0}\left(Y^{2}-X Z\right)+\lambda_{1}(X W-Y Z)+\lambda_{2}\left(Z^{2}-Y W\right) .
$$

Show that if $\lambda \neq \mu$ then the zero locus of F_{λ} and F_{μ} is also the union of C and a line (again, in fact either a tangent or secant line).
5. Show that any set of points on a rational normal curve are in linear general position.

