HWK \#1, DUE WEDNESDAY 04/09

1. Let $\pi: X \longrightarrow B$ be a projective and surjective morphism with connected fibres of dimension n, where X and B are quasi-projective and X is irreducible. Let $f: X \longrightarrow Y$ be a morphism of quasi-projective varieties.
If there is a point $b_{0} \in B$ such that $f\left(\pi^{-1}\left(b_{0}\right)\right)$ is a point, then $f\left(\pi^{-1}(b)\right)$ is a point for every $b \in B$. This result is known as the rigidity lemma. (Hint: consider the morphism $f \times \pi: X \longrightarrow Y \times B$).
2. Recall that an abelian variety A is a connected and projective algebraic group (you may assume that a connected algebraic group is irreducible). Show that every abelian variety is a commutative group. (Hint: consider the morphism $A \times A \longrightarrow A$ given by conjugation).
If A is a commutative algebraic group and $a \in A$ then the action of A on itself by left (or right) translation defines a morphism $\tau_{a}: A \longrightarrow A$, $\tau_{a}(x)=x+a$. We will refer to any such morphism as a translation.
3. Show that if $\pi: A \longrightarrow B$ is a morphism of abelian varieties then π is the composition of a translation and a group homomorphism.
4. Show that if $\pi: G \longrightarrow H$ is a morphism of algebraic tori then π is the composition of a translation and a group homomorphism. In particular, if $G=\mathbb{G}_{m}$ and $H=\mathbb{G}_{m}^{n}$ and π sends the identity to the identity then there are integers $a_{1}, a_{2}, \ldots, a_{n}$ such that $\pi(t)=\left(t^{a_{1}}, t^{a_{2}}, \ldots, t^{a_{n}}\right)$. (Hint: consider the map of group algebras (aka coordinate rings)).
5. Let A be an abelian variety. Show that every rational map $f: \mathbb{P}^{1} \rightarrow$ A is constant. You may use the fact that every morphism $\pi: G \longrightarrow A$ is a composition of a translation and a group homomorphism, where G is a group isomorphic to either \mathbb{G}_{a} or \mathbb{G}_{m}.
(Just for fun: For those who know some of the theory of complex manifolds, note that if the underlying field is \mathbb{C}, then every abelian variety is a complex torus. Give another proof that f is constant in this case).
6. Let X and Y be two projective varieties in \mathbb{P}^{n} of dimensions d and e. The join $J(X, Y)$ is the union of all lines which intersect both X and Y.
(i) Show that if X and Y belong to linear spaces which don't intersect then the dimension of the join of X and Y is equal to $d+e+1$.
(ii) Show that if X and Y don't intersect then the dimension of the join of X and Y is equal to $d+e+1$ (Hint: reduce to the case above, by realising X and Y as the projection of \tilde{X} and \tilde{Y} in $\left.\mathbb{P}^{2 n+1}\right)$.
(iii) Show that if $d+e \geq n$ then X and Y must intersect.
