
22. −1-curves

We will need a little bit of intersection theory.
Given any variety X we can define cycles of any dimension on X. A

cycle α is a formal linear combination of closed subvarieties,
∑
nV V .

If V all have the same dimension k then we say α is a k-cycle. Two k-
cycles α and β are rationally equivalent if there is a k+1 dimensional
subvariety W which contains the support of α and β and α and β
are linearly equivalent divisors on the normalisation of W . If X has
dimension n then an (n− 1)-cycle is the same as a Weil divisor.

Note that we can pullback Cartier divisors. We can also pushforward
Weil divisors, or more generally cycles. If f : X −→ Y is a proper
morphism and V is an irreducible closed subvariety with image W
then

f∗V =

{
dW if f |V : V −→ W is generically finite of degree d

0 otherwise.

In other words if the image of V is lower dimensional then f∗V = 0. If
the image W of V has the same dimension then f∗V = dW where d is
the degree of V over W . We extend the pushforward by linearity to all
cycles.

Note that we can intersect a cycle α with a Cartier divisor D, to
get a cycle α ·D. By linearity we may assume that α = V is a closed
irreducible subvariety. In this case we can define a linear equivalence of
Cartier divisors on V . If the support of D does not contain then simply
restrict the equations of D to V . If the support of D does contain V
then restrict the invertible sheaf OX(D) to V to get an invertible sheaf
on V . An invertible sheaf is the same as a linear equivalence class of
Cartier divisors. Now pushforward the corresponding Weil divisor, via
the natural inclusion V −→ X to get a cycle on X.

Now pushforward is not a ring homomorphism, but it is almost is:

Theorem 22.1 (Push-pull). Let f : X −→ Y be a proper morphism of
varieties. Let α be a cycle on X and let D be a Cartier divisor on Y .

Then

f∗(α · f ∗D) = f∗α ·D.

0-cycles are formal sums of points
∑
npp. The degree is the sum∑

np. Note that two rationally equivalent 0-cycles have the same de-
gree.

If X is a smooth projective variety over C then we can associate to
any cycle α a class in homology. As usual, by linearity it is enough to
do this for irreducible subvarieties V . Take a simplicial decomposition
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of X which induces a simplicial decomposition of V . Then V defines
a class [V ] ∈ H∗(X,Z). A divisor D determines a class in cohomology
[D] ∈ H2(X,Z). We can pair this with a homology classes. This is
compatible with the algebraic intersection product

[D · α] = [D] ∩ [α] ∈ H∗(X,Z).

Note also that there is a topological push-pull formula.
Now let us consider what happens for surfaces. 1-cycles, or Weil

divisors, are nothing more than formal sums of curves. If we intersect
a Weil divisor with a Cartier divisor, we will get a rational equivalence
class of 0-cycles. The intersection number is just the degree of the 0-
cycles. From now on, the intersection product will denote the degree.

We can compute the degree locally.

Definition 22.2. Let S be a smooth surface and let p be a point of S.
Let D1 and D2 be two Cartier divisors on S.

First suppose that D1 = C1 and D2 = C2 are prime divisors. The
local intersection number of D1 and D2 at p,

ip(D1, D2) = dimkOS,p/〈f1, f2〉,
where f1 and f2 are local generators of the ideals of C1 and C2.

Now extend this by linearity to any two divisors with no common
components.

It is interesting to check that the local intersection number coincides
with geometric intuition.

Example 22.3. Let S = A2, let C1 be the x-axis = 0 and let C2 be
the conic y = x2. Then C1 and C2 are tangent. The local intersection
number is the dimension of the k-vector space

k[x, y]

〈y, y − x2〉
=
k[x]

〈x2〉
= k〈1, x〉

which is two, as expected.

Proposition 22.4. If S is a projective surface and D1 and D2 are two
divisors with no common components

D1 ·D2 =
∑
p

ip(D1, D2).

Here the sum is over all points p in the interesection.

Theorem 22.5 (Bézout’s Theorem). Let C and D be two curves de-
fined by homogenous polynomials of degrees d and e. Suppose that C∩D
does not contain a curve.
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Then |C∩D| is at most de, with equality if and only if the intersection
of the two tangent spaces at p ∈ C ∩D is equal to p.

Proof. C ∼ dL and D ∼ eL, where L is a line. In this case

|C ∩D| ≤
∑
p

ip(C,D) = C ·D = (dL) · (eL) = (de)L2 = de. �

Definition 22.6. Let C ⊂ S be a curve in a smooth surface. Let p ∈ S
be a point of S.

The multiplicity of C at p ∈ S is the largest µ such that Ip ⊂ mµ

where m is the maximal ideal of S at p in OS,p and I is the ideal sheaf
of C in S.

Note that I = 〈f〉, so we just want the largest µ such that f ∈ mµ.
If we work over C, then we can choose coordinates x and y. In this
case m = 〈x, y〉 and f is a power series in x and y. If we expand f in
powers of x and y,

f(x, y) = f0 + f1 + f2 + . . .

where fi is homogenous of degree i then the multiplicity µ is the small-
est integer such that fµ 6= 0.

Lemma 22.7. Let C ⊂ S be a curve in a smooth surface. Let p ∈ S
be a point of S and let π : T −→ S be the blow up of S at p. Let C̃ be
the strict transform of C. Then

π∗C = C̃ + µE.

Proof. Pick coordinates so that y = 0 is not tangent to any branch of
C. Then T ⊂ S × P1 and local coordinates on T are given by (x, t),
where y = tx. In this case

f(x, y) = fµ(x, xt) + fµ+1(x, xt) = xµ(fµ(1, t) + xfµ(1, t) + . . . ).

As x = 0 is the equation of E the result is clear. �

Proposition 22.8. Let S be a smooth surface, let p ∈ S be a point of
S and let π : T −→ S be the blow up of S at p, with exceptional divisor
E.

Then E2 = −1.

Proof. We give two proofs of this result.
Here is the first. Note that this is a local computation. So we might

as well assume that S = P2. Pick a line L passing through p. Then L
is a Cartier divisor on S. We have

π∗L = M + E,

where M is the strict transform of L.
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Let L1 and L2 be two general lines through p. Then

L2 = L1 · L2 = 1,

that is, two lines meet in one point. Let M1 and M2 be the strict
transforms of L1 and L2. Then M1 and M2 don’t meet, by definition
of the blow up. Thus

M2 = M1 ·M2 = 0.

To practice using push-pull, let us calculate E · π∗L. By push-pull,

E · π∗L = π∗(E · π∗L) = π∗E · L = 0.

Thus

1 = M · π∗L = M · (M + E) = M ·M +M · E = 1,

which is consistent.
Now let us calculate E · π∗L. By push-pull this is

π∗(E · π∗L) = π∗E · L = 0,

since π∗E = 0. On the other hand,

E · π∗L = E · (M + E) = E ·M + E2 = 1 + E2.

Thus E2 = −1.
Here is the second method. The ideal sheaf of E in T is given by

OT (−E). By definition of the blow up, this restricts to OE(1) =
OP1(1). Thus OT (E) restricts to OE(−1), so that E|E has degree
−1. �

Definition-Lemma 22.9. Let S be a smooth surface and let C ⊂ S
be a proper irreducible curve.

Any two of the following three properties implies the third:

(1) C ' P1.
(2) C2 = −1.
(3) KS · C = −1.

In this case we call E a −1-curve.

Proof. By adjunction

(KS + C)|C = KC .

Thus

2g − 2 = degKC = (KS + C) · C.
Note that C ' P1 if and only if g = 0. The result is then clear. �

4



Lemma 22.10. Let π : T −→ S be the blow up of a smooth point of a
smooth surface. Let E be the exceptional divisor.

Then
KT = π∗KS + E.

Proof. Note that π is an isomorphism outside p, so that

KT = π∗KS + aE,

for some integer a. It suffices to check that a = 1; we will give two
proofs of this result.

Here is the first. We have already seen that E ' P1 and E2 = −1.
So KT · E = −1 by (22.9). On the other hand,

−1 = KT · E = (π∗KS + aE) · E = KSπ∗E + aE2 = −a.
Thus a = 1.

The second is by direct computation. Let (x, y) be local coordinates
on S. Then

ω = dx ∧ dy,

is a meromorphic differential with no poles or zeroes in a neighbourhood
of p. Local coordinates upstairs are (x, t), where y = xt.

π∗ω = dx ∧ d(xt)

= dx ∧ (tdx+ xd(t)

= tdx ∧ dx+ xdx ∧ d(t)

= xdx ∧ dt.

Thus the pullback of a meromorphic differential from S always has a
simple zero along E. �

Lemma 22.11. Let π : T −→ S be the blow up of a smooth point of a
smooth surface.

Then
K2
T = K2

S − 1.

Proof.

K2
T = KT · (π∗KS + E) = KT · π∗KS +KT · E = K2

S − 1. �
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