
3. Smoothness and the Zariski tangent space

We want to give an algebraic notion of the tangent space. In dif-
ferential geometry, tangent vectors are equivalence classes of maps of
intervals in R into the manifold. This definition lifts to algebraic ge-
ometry over C but not over any other field (for example a field of
characteristic p).

Classically tangent vectors are determined by taking derivatives, and
the tangent space to a variety X at x is then the space of tangent
directions, in the whole space, which are tangent to X. Even is this is
how we will compute the tangent space in general, it is still desirable
to have an intrinsic definition, that is, a definition which does not use
the fact that X is embedded in Pn.

Now note first that the notion of smoothness is surely local and that
if we want an intrinsic definition, then we want a definition that only
uses the functions on X. Putting this together, smoothness should
be a property of the local ring of X at p. On the other hand taking
derivatives is the same as linear approximation, which means dropping
quadratic and higher terms.

Definition 3.1. Let X be a variety and let p ∈ X be a point of X.
The Zariski tangent space of X at p, denoted TpX, is equal to the
dual of the quotient

m/m2,

where m is the maximal ideal of OX,p.

Note that m/m2 is a vector space. Suppose that we are given a
morphism

f : X −→ Y,

which sends p to q. In this case there is a ring homomorphism

f ∗ : OY,q −→ OX,p
which sends the maximal ideal n into the maximal ideal m. Thus we
get an induced map

df : n/n2 −→ m/m2.

On the other hand, geometrically the map on tangent spaces obviously
goes the other way. It follows that we really do want the dual of m/m2.
In fact m/m2 is the dual of the Zariski tangent space, and is referred
to as the cotangent space.

In particular, given a morphism f : X −→ Y carrying p to q, then
there is a linear map

df : TpX −→ TqY.
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Definition 3.2. Let X be a quasi-projective variety.
We say that X is smooth at p if the local dimension of X at p is

equal to the dimension of the Zariski tangent space at p.

Now the tangent space to An is canonically a copy of An itself, con-
sidered as a vector space based at the point in question. If X ⊂ An,
then the tangent space to X is included inside the tangent space to An.
The question is then how to describe this subspace.

Lemma 3.3. Let X ⊂ An be an affine variety. Suppose that f1, f2, . . . , fk
generate the ideal I of X. Then the tangent space of X at p, considered
as a subspace of the tangent space to An, via the inclusion of X in An,
is equal to the kernel of the Jacobian matrix.

Proof. Clearly it is easier to give the dual description of the cotangent
space.

If m is the maximal ideal of OAn,p and n is the maximal ideal of OX,p,
then clearly the natural map m −→ n is surjective, so that the induced
map on contangent spaces is surjective. Dually, the induced map on
the Zariski tangent space is injective, so that TpX is indeed included
in TpAn.

We may as well choose coordinates x1, x2, . . . , xn so that p is the
origin. In this case m = 〈x1, x2, . . . , xn〉 and n = m/I. Moreover m/m2

is the vector space spanned by dx1, dx2, . . . , dxn, where dxi denotes
the equivalence class xi + m2, and n/n2 is canonically isomorphic to
m/(m2 +I). Now the transpose of the Jacobian matrix, defines a linear
map

Kk −→ Kn = T ∗pAn,

and it suffices to prove that the image of this map is the kernel of the
map

df : m/m2 −→ n/n2.

Let g ∈ m. Then

g(x) =
∑

aixi + h(x),

where h(x) ∈ m2. Thus the image of g(x) in m/m2 is equal to
∑

i aidxi.
Moreover, by standard calculus ai is nothing more than

ai =
∂g

∂xi

∣∣∣∣
p

.

Thus the kernel of the map df is generated by the image of fi in m/m2,
which is ∑

j

∂fi
∂xj

∣∣∣∣
p

dxj,
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which is nothing more than the image of the Jacobian. �

Lemma 3.4. Let X be a quasi-projective variety. Then the function

λ : X −→ N,
is upper semi-continuous, where λ(x) is the dimension of the Zariski
tangent space at x.

Proof. Clearly this result is local on X so that we may assume that X
is affine. In this case the Jacobian matrix defines a morphism π from X
to the space of matrices and the locus where the Zariski tangent space
has a fixed dimension is equal to the locus where this morphism lands
in the space of matrices of fixed rank. Put differently the function λ is
the composition of π and an affine linear function of the rank on the
space of matrices. Since the rank function is upper semicontinuous, the
result follows. �

Lemma 3.5. Every irreducible quasi-projective variety is birational to
a hypersurface.

Proof. Let X be a quasi-projective variety of dimension k, with func-
tion field L/K. Let L/M/K be an intermediary field, such that M/K
is purely transcendental of transcendence degree, so that L/M is alge-
braic. As L/M is a finitely generated extension, it follows that L/M
is finite. Suppose that L/M is not separable. Then there is an ele-
ment y ∈ L such that y /∈ M but x1 = yp ∈ M . We may extend x1
to a transcendence basis x1, x2, . . . , xk of M/K. Let M ′ be the inter-
mediary field generated by y, x2, x3, . . . , xk. Then M ′/K is a purely
transcendental extension of K and

[L : M ] = [L : M ′][M ′ : M ] = p[L : M ′].

Repeatedly replacing M by M ′ we may assume that L/M is a separable
extension.

By the primitive element Theorem, L/M is generated by one ele-
ment, say α. It follows that there is polynomial f(x) ∈M [x] such that
α is a root of f(x). If M = K(x1, x2, . . . , xk), then clearing denomina-
tors, we may assume that f(x) ∈ K[x1, x2, . . . , xk][x] ' K[x1, x2, . . . , xk+1].
But then X is birational to the hypersurface defined by F (X), where
F (X) is the homogenisation of f(x). �

Proposition 3.6. The set of smooth points of any variety is Zariski
dense.

Proof. Since the dimension of the Zariski tangent space is upper semi-
continuous, and always at least the dimension of the variety, it suffices
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to prove that every irreducible variety contains at least one smooth
point. By (3.5) we may assume that X is a hypersurface. Passing to
an affine open subset, we may assume that X is an affine hypersurface.
Let f be a definining equation, so that f is an irreducible polynomial.
Then the set of singular points of X is equal to the locus of points where
every partial derivative vanishes. If g is a non-zero partial derivative
of f , then g is a non-zero polynomial of degree one less than f , and so
cannot vanish on X.

If all the partial derivatives of f are the zero polynomial, then f is
a pth power, where the characteristic is p, which contradicts the fact
that f is irreducible. �

Note that if we take a smooth variety X and blow up a point p,
then the exceptional divisor E is canonically the projectivisation of
the Zariski tangent space to X at p,

E = P(TpX).

Indeed the point is that E picks up the different tangent directions to
X at p, and this is exactly the set of lines in TpX.

One defines the Zariski tangent space to a scheme X, at a point x,
using exactly the same definition, the dual of

m/m2,

where m ⊂ OX,x is the maximal ideal of the local ring. However in
general, if we have the equality of dimensions of both the Zariski tan-
gent space and the local dimension, we only call X regular at x ∈ X.
Smoothness is a more restricted notion in general.

Having said this, if X is a quasi-projective variety over an alge-
braically closed field then X is smooth as a variety if and only if it is
smooth as a scheme over Spec k. In fact an abstract variety over Spec k
is smooth if and only if it is regular. Note that if x is a specialisation
of ξ and X is regular at x then X is regular at ξ, so it is enough to
check that X is regular at the closed points.

One can sometimes use the Zariski tangent space to identify embed-
ded points. If X is a scheme and Y = Xred is the reduced subscheme
then x ∈ X is an embedded point if

dimTxX > dimTxY,

and X is reduced away from x. For example, if X is not regular at x
but Y is regular at x then x ∈ X is an embedded point.

It is interesting to see which toric varieties are smooth. The question
is local, so we might as well assume that X = Uσ is affine. If σ ⊂ NR
does not span NR, then X ' Uσ′ × Gl

m, where σ′ is the same cone as
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σ embedded in the space it spans. So we might as well assume that
σ spans NR. In this case X contains a unique fixed point xσ which
is in the closure of every orbit. Since X only contains finitely many
orbits, it follows that X is smooth if and only if X is regular at xσ.
The maximal ideal of xσ is generated by χu, where u ∈ Sσ. The square
of the maximal is generated by χu+v, where u and v are two elements
of Sσ. So a basis for m/m2 is given by elements of Sσ that are not sums
of two elements. Since the elements of Sσ generate the group M , the
elements of Sσ which are not sums of two elements, must generate the
group. Given an extremal ray of σ̌, a primitive generator of this ray is
not the sum of two elements in Sσ. So σ̌ must have n edges and they
must generate M . So these elements are a basis of the lattice and in
fact X ' An

k .
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