7. Ample invertible sheaves

Theorem 7.1. Let X be a scheme over a ring A.

1. If $\phi: X \to \mathbb{P}^n_A$ is an A-morphism then $\mathcal{L} = \phi^* \mathcal{O}_{\mathbb{P}^n_A}(1)$ is an invertible sheaf on X, which is generated by the global sections s_0, s_1, \ldots, s_n, where $s_i = \phi^* x_i$.

2. If \mathcal{L} is an invertible sheaf on X, which is generated by the global sections s_0, s_1, \ldots, s_n, then there is a unique A-morphism $\phi: X \to \mathbb{P}^n_A$ such that $\mathcal{L} = \phi^* \mathcal{O}_{\mathbb{P}^n_A}(1)$ and $s_i = \phi^* x_i$.

Proof. It is clear that \mathcal{L} is an invertible sheaf. Since x_0, x_1, \ldots, x_n generate the ring $A[x_0, x_1, \ldots, x_n]$, it follows that x_0, x_1, \ldots, x_n generate the sheaf $\mathcal{O}_{\mathbb{P}^n_A}(1)$. Thus s_0, s_1, \ldots, s_n generate \mathcal{L}. Hence (1).

Now suppose that \mathcal{L} is an invertible sheaf generated by s_0, s_1, \ldots, s_n. Let $X_i = \{ p \in X \mid s_i \notin m_p \mathcal{L}_p \}$.

Then X_i is an open subset of X and the sets X_0, X_1, \ldots, X_n cover X. Define a morphism

$$\phi_i: X_i \to U_i,$$

where U_i is the standard open subset of \mathbb{P}^n_A, as follows: Since $U_i = \text{Spec} A[y_0, y_1, \ldots, y_n]$, where $y_j = x_j/x_i$, is affine, it suffices to give a ring homomorphism

$$A[y_0, y_1, \ldots, y_n] \to \Gamma(X_i, \mathcal{O}_{X_i}).$$

We send y_j to s_j/s_i, and extend by linearity. The key observation is that the ratio is a well-defined element of \mathcal{O}_{X_i}, which does not depend on the choice of isomorphisms $\mathcal{L}|_V \simeq \mathcal{O}_V$, for open subsets $V \subset X_i$.

It is then straightforward to check that the set of morphisms $\{\phi_i\}$ glues to a morphism ϕ with the given properties. □

Example 7.2. Let $X = \mathbb{P}^1_k$, $A = k$, $\mathcal{L} = \mathcal{O}_{\mathbb{P}^1_k}(2)$.

In this case, global sections of \mathcal{L} are generated by S^2, ST and T^2. This morphism is represented globally by

$$[S : T] \to [S^2 : ST : T^2].$$

The image is the conic $XZ = Y^2$ inside \mathbb{P}^2_k.

More generally one can map \mathbb{P}^1_k into \mathbb{P}^n_k by the invertible sheaf $\mathcal{O}_{\mathbb{P}^1_k}(n)$. More generally still, one can map \mathbb{P}^m_k into \mathbb{P}^n_k using the invertible sheaf $\mathcal{O}_{\mathbb{P}^m_k}(1)$.

Corollary 7.3.

$$\text{Aut}(\mathbb{P}^n_k) \simeq \text{PGL}(n+1, k).$$
Proof. First note that $\text{PGL}(n+1, k)$ acts naturally on \mathbb{P}_k^n and that this action is faithful.

Now suppose that $\phi \in \text{Aut}(\mathbb{P}_k^n)$. Let $L = \phi^*\mathcal{O}_{\mathbb{P}_k^n}(1)$. Since $\text{Pic}(\mathbb{P}_k^n) \cong \mathbb{Z}$ is generated by $\mathcal{O}_{\mathbb{P}_k^n}(1)$, it follows that $L \cong \mathcal{O}_{\mathbb{P}_k^n}(\pm 1)$. As L is globally generated, we must have $L \cong \mathcal{O}_{\mathbb{P}_k^n}(1)$. Let $s_i = \phi^*x_i$. Then s_0, s_1, \ldots, s_n is a basis for the k-vector space $H^0(\mathbb{P}_k^n, \mathcal{O}_{\mathbb{P}_k^n}(1))$. But then there is a matrix

$$A = (a_{ij}) \in \text{GL}(n+1, k) \quad \text{such that} \quad s_i = \sum_{ij} a_{ij}x_j.$$

Since the morphism ϕ is determined by s_0, s_1, \ldots, s_n, it follows that ϕ is determined by the class of A in $\text{GL}(n+1, k)$. \qed

Lemma 7.4. Let $\phi: X \to \mathbb{P}_A^n$ be an A-morphism. Then ϕ is a closed immersion if and only if

1. $X = X_i$ is affine, and
2. the natural map of rings

$$A[y_0, y_1, \ldots, y_n] \to \Gamma(X, \mathcal{O}_{X_i}) \quad \text{which sends} \quad y_j \to \frac{\sigma_j}{\sigma_i},$$

is surjective.

Proof. Suppose that ϕ is a closed immersion. Then X_i is isomorphic to $\phi(X) \cap U_i$, a closed subscheme of affine space. Thus X_i is affine. Hence (1) and (2) follow as we have surjectivity on all of the localisations.

Now suppose that (1) and (2) hold. Then X_i is a closed subscheme of U_i and so X is a closed subscheme of \mathbb{P}_A^n. \qed

Theorem 7.5. Let X be a projective scheme over an algebraically closed field k and let $\phi: X \to \mathbb{P}_k^n$ be a morphism over k, which is given by an invertible sheaf \mathcal{L} and global sections s_0, s_1, \ldots, s_n which generate \mathcal{L}. Let $V \subset \Gamma(X, \mathcal{L})$ be the space spanned by the sections.

Then ϕ is a closed immersion if and only if

1. V **separates points**: that is, given p and $q \in X$ there is $\sigma \in V$ such that $\sigma \in m_p\mathcal{L}_p$ but $\sigma \notin m_q\mathcal{L}_q$.
2. V **separates tangent vectors**: that is, given $p \in X$ the set

$$\{ \sigma \in V \mid \sigma \in m_p\mathcal{L}_p \},$$

spans $m_p\mathcal{L}_p/m_p^2\mathcal{L}_p$.

Proof. Suppose that ϕ is a closed immersion. Then we might as well consider $X \subset \mathbb{P}_k^n$ as a closed subscheme. In this case (1) is clear. Just pick a linear function on the whole of \mathbb{P}_k^n which vanishes at p but not at q (equivalently pick a hyperplane which contains p but not q).
Similarly linear functions on \mathbb{P}_k^n separate tangent vectors on the whole of projective space, so they certainly separate on X. Now suppose that (1) and (2) hold. Then ϕ is clearly injective. Since X is proper over Spec k and \mathbb{P}_k^n is separated over Spec k it follows that ϕ is proper. In particular $\phi(X)$ and ϕ is a homeomorphism onto $\phi(X)$. It remains to show that the map on stalks

$$\mathcal{O}_{\mathbb{P}_k^n, p} \rightarrow \mathcal{O}_{X,x},$$

is surjective. But the same piece of commutative algebra as we used in the proof of the inverse function theorem, works here. □

Definition 7.6. Let X be a noetherian scheme. We say that an invertible sheaf \mathcal{L} is ample if for every coherent sheaf \mathcal{F} there is an integer $n_0 > 0$ such that $\mathcal{F} \otimes \mathcal{L}^n$ is globally generated, for all $n \geq n_0$.

Lemma 7.7. Let \mathcal{L} be an invertible sheaf on a Noetherian scheme. TFAE

1. \mathcal{L} is ample.
2. \mathcal{L}^m is ample for all $m > 0$.
3. \mathcal{L}^m is ample for some $m > 0$.

Proof. (1) implies (2) implies (3) is clear.

So assume that $\mathcal{M} = \mathcal{L}^m$ is ample and let \mathcal{F} be a coherent sheaf. For each $0 \leq i \leq m - 1$, let $\mathcal{F}_i = \mathcal{F} \otimes \mathcal{L}^i$. By assumption there is an integer n_i such that $\mathcal{F}_i \otimes \mathcal{M}^n$ is globally generated for all $n \geq n_i$. Let n_0 be the maximum of the n_i. If $n \geq n_0 m$, then we may write $n = qm + i$, where $0 \leq i \leq m - 1$ and $q \geq n_0 \geq n_i$.

But then

$$\mathcal{F} \otimes \mathcal{L}^m = \mathcal{F}_i \otimes \mathcal{M}^q,$$

which is globally generated. □

Theorem 7.8. Let X be a scheme of finite type over a Noetherian ring A and let \mathcal{L} be an invertible sheaf on X.

Then \mathcal{L} is ample if and only if \mathcal{L}^m is very ample for some $m > 0$.

Proof. Suppose that \mathcal{L}^m is very ample. Then there is an immersion $X \subset \mathbb{P}_A^r$, for some positive integer r, and $\mathcal{L}^m = \mathcal{O}_X(1)$. Let \bar{X} be the closure. If \mathcal{F} is any coherent sheaf on X then there is a coherent sheaf $\bar{\mathcal{F}}$ on \bar{X}, such that $\mathcal{F} = \bar{\mathcal{F}}|_X$. By Serre’s result, $\bar{\mathcal{F}}(k)$ is globally generated for all $k \geq k_0$, for some integer k_0. It follows that $\mathcal{F}(k)$ is globally generated, for all $k \geq k_0$, so that \mathcal{L}^m is ample, and the result follows by (7.7).

Conversely, suppose that \mathcal{L} is ample. Given $p \in X$, pick an open affine neighbourhood U of p so that $\mathcal{L}|_U$ is free. Let $Y = X - U$, give it
the reduced induced structure, with ideal sheaf \mathcal{I}. Then \mathcal{I} is coherent.

Pick $n > 0$ so that $\mathcal{I} \otimes \mathcal{L}^n$ is globally generated. Then we may find $s \in \mathcal{I} \otimes \mathcal{L}^n$ not vanishing at p. We may identify s with $s' \in \mathcal{O}_U$ and then $p \in U \subset U$, an affine subset of X.

By compactness, we may cover X by such open affines and we may assume that n is fixed. Replacing \mathcal{L} by \mathcal{L}^n we may assume that $n = 1$. Then there are global sections $s_1, s_2, \ldots, s_k \in H^0(X, \mathcal{L})$ such that $U_i = U_{s_i}$ is an open affine cover.

Since X is of finite type, each $B_i = H^0(U_i, \mathcal{O}_{U_i})$ is a finitely generated A-algebra. Pick generators b_{ij}. Then $s^n b_{ij}$ lifts to $s_{ij} \in H^0(X, \mathcal{L}^n)$. Again we might as well assume $n = 1$.

Now let \mathbb{P}^N_A be the projective space with coordinates x_1, x_2, \ldots, x_k and x_{ij}. Locally we can define a map on each U_i to the standard open affine, by the obvious rule, and it is standard to check that this glues to an immersion. \qed