
MODEL ANSWERS TO HWK #3

1. (i) Call a line standard if it is either horizontal or vertical.
It is expedient to prove an even stronger result. We prove that if
f : U −→ C is any function, where U is the complement of finitely
many standard lines, which restricts to a polynomial on any standard
line contained in U , then f is a polynomial. We will be somewhat
sloppy and say that a standard line is contained in U if it is not one of
the deleted lines (strictly speaking, only the line minus finitely many
points lies in U).
Note that if V ⊂ U is obtained from U by deleting finitely many more
standard lines and f |V is a polynomial, then f is a polynomial. Indeed
f |V extends to a polynomial function g : U −→ C. If l is a line in U
then f |l and g|l agree on an open subset of the line and so are equal.
But then f = g.
Let d be the smallest positive integer such that there are uncountably
many real numbers r such that the restriction of f to the vertical line
x = r is a polynomial of degree at most d and there are uncountably
many real numbers s such that the restriction of f to the horizontal
line y = s is a polynomial of degree at most d.
We proceed by induction on d. Suppose that d < 0, so that f(x, y)
restricts to the zero function on infinitely many horizontal and infinitely
many vertical lines. If l is any standard line contained in U then the
restriction of f to l is a polynomial with infinitely many zeroes, so
that f must be the zero function, which is represented by the zero
polynomial.
Suppose that d ≥ 0. Note that the change of coordinates x −→ x− a
does not change the property that U is the complement of finitely many
standard lines, that f restricted to any standard line is a polynomial
and it also does not change the value of d. So we might as well assume
that the x-axis is contained in U and f(x, 0) is a polynomial of degree
at most d. Let g(x, y) = f(x, y) − f(x, 0). Then the restriction of
g(x, y) to every vertical line is a polynomial in y which vanishes at the
origin. Let V ⊂ U be the set obtained by deleting the line y = 0. Let

h : V −→ C,

be the function h(x, y) = f(x, y)/y. Then V is obtained from C2 by
deleting finitely many standard lines, h(x, y) is a function which when
restricted to any standard line in V is a polynomial, which has degree
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at most d−1 on uncountably many standard lines. By induction h(x, y)
is a polynomial function. It follows that f(x, y) = yh(x, y) + f(x, 0) is
a polynomial function on V , whence on U . Thus P (C) is true.
(ii) Enumerate, c1, c2, . . . the points of Q and let hn(y) (respectively
vn(x)) be the polynomial which vanishes on the first n horizontal (re-
spectively vertical) lines. Let

f(x, y) =
∞∑
i=0

hi(y)vi(x).

It is clear that f(x, y) is not a polynomial. But suppose we pick a
horizontal line, given by, y = b. Then b = cn for some n and so

f(x, b) =
∑
i≤n

hi(b)vi(x),

so that f(x, b) is a polynomial. By symmetry the restriction of f(x, y)
to any vertical line is a polynomial. So P (Q) fails.
(iii) Clear, from (i) and (ii) and the Lefschetz principle.
2. (i) Let φ ∈ V , ψ ∈ V and let λ ∈ k. Then

φ : z −→ X,

is a morphism of schemes over k, such that the unique point of z goes
to x. But then φ corresponds to a morphism of local rings over k,

f : OX,x −→
k[ε]

〈ε2〉
.

Similarly suppose that ψ corresponds to g. Note that the function

mλ :
k[ε]

〈ε2〉
−→ k[ε]

〈ε2〉
given by a+ bε −→ a+ λbε,

is a morphism of local rings, which is an isomorphism if and only if
λ 6= 0. Let λφ be the morphism of schemes corresponding to the
morphism of local rings mλ ◦ f . Similarly, define a map

α :
k[ε1]

〈ε21〉
⊗
k

k[ε2]

〈ε22〉
−→ k[ε]

〈ε2〉
,

by sending both ε1and ε2 to ε and extend by linearity to get a morphism
of local rings. Composing with the natural map

(f, g) : OX,x −→
k[ε1]

〈ε21〉
⊗
k

k[ε2]

〈ε22〉
,

we get a morphism of local rings and this defines a morphism

φ+ ψ : z −→ X.
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This defines an operation of scalar multiplication and addition of vec-
tors, which clearly satisfy the axioms for a vector space.
(ii) If φ ∈ TxX and

f : OX,x −→
k[ε]

〈ε2〉
,

is the corresponding morphism of local rings, then the kernel of f con-
tains m2. On the other hand, the inverse image of 〈ε〉 is by definition
contained in m. It follows that we get a linear map of vector spaces

m

m2
−→ k〈ε〉 ' k,

that is, an element of the dual space( m

m2

)∗
,

and it is not hard to see that this assignment induces a bijection.
2. 1. By assumption there are open subsets U and V and isomorphisms
L|U ' OU , M|V ' OV . Passing to the open subset U ∩ V we may as
well assume that L =M = OX . It suffices to check that the map is an
isomorphism on stalks. Suppose that x ∈ X and let A = OX,x. Then A
is a local ring and we are given a surjective A-module homomorphism
φ : A −→ A. φ is given by multiplication by an element a of A. Suppose
that φ(b) = 1. Then ab = 1 and so a is a unit and φ is an isomorphism.
Thus f is an isomorphism on stalks and f is an isomorphism.
2. Suppose that m > n. As dimV ≤ n + 1 it follows that ti is a
linear combination of the other sections, for some 1 ≤ i ≤ m. Let
π : Pm −→ Pm−1 be the projection map which drop the ith coordinate.
The composition

π ◦ φ : X −→ Pm−1,
is the morphism given by t0, t1, . . . , t̂i, . . . , tn. So we may assume m = n
by induction on m− n.
Suppose first that dim |V | = dimV − 1 = n. In this case both
s1, s2, . . . , sn and t1, t2, . . . , tn are bases of V . So there is a unique
matrix A = (aij) such that

ti =
∑

aijsj.

This matrix corresponds to an isomorphism σ : Pn −→ Pn and it is
clear that ψ = σ ◦ φ.
In general the image of X is contained in linear spaces Λi, i = 1 and 2 of
dimension dim |V | = dimV − 1. Pick complimentary linear subspaces
Λ′i. We have already exhibited an isomorphism σ1 : Λ1 −→ Λ2, such
that ψ = σ1◦φ and we may extend this to an isomorphism of σ : Pn −→
Pn such that σ(Λ′1) = Λ′2 and ψ = σ ◦ φ.
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3. (a) Let L = φ∗OPn(1). As Pic(Pn) = Z it follows that L = OPn(d),
for some integer d. As L is globally generated d ≥ 0. If d = 0 then
φ(Pn) is a point. Otherwise d > 0 and L is ample. Suppose that
C ⊂ Pn is an irreducible curve. As L is ample, L|C is not the trivial
invertible sheaf. If x ∈ C then we may find a section σ ∈ H0(Pn,L)
which does not vanish at x. As L|C is not the trivial invertible sheaf,
σ|C must vanish somewhere. Therefore the image of C is curve. Let
X = φ(Pn). If dimX < n, then the fibres of φ : Pn −→ X are positive
dimensional. But then the fibres must contain curves C (just cut by
hyperplanes) which are sent to a point, a contradiction.
(b) As stated, this is obviously false. Let φ : P1 −→ P2 be the morphism

[S : T ] −→ [S : S : T ].

It is clear in this case that d = 1. The 1-uple embedding is the identity.
But then we cannot hope to project from P1 down to P2.
So let’s assume that the image of φ is non-degenerate, that is, not
contained in a hyperplane. φ is given by a linear system. It follows that
there is an invertible sheaf L and a collection of sections s1, s2, . . . , sa ⊂
H0(Pn,L). Since Pic(Pn) ' Z, generated by OPn(1), it follows that
L = OPn(d), up to isomorphism. Let t0, t1, . . . , tN be the standard
basis of H0(Pn,OPn(d)) given by monomials of degree d. Then the
induced morphism is the d-uple embedding Pn −→ PN . Let

V ⊂ H0(Pn,L),

be the subvector space spanned by s1, s2, . . . , sa. Our assumption that
φ is non-degenerate means that s1, s2, . . . , sa are a basis of V . We may
extend this to a basis of H0(Pn,L) and this defines an automorphism σ
of PN . Projecting down to the first a+1 coordinates gives the morphism
φ. Finally note that applying an automorphism of PN is the same as
projecting from the linear space L, which is the image under σ of the
space spanned by the last N −a− 1 coordinates and an automorphism
of Pn.
4. (a) If L is ample then Lm is very ample, for some positive integer
m. But then there is an immersion X −→ Pnk for some positive integer
n and it follows that X is separated.
(b) By assumption there are two open subsets U1 and U2 both of which
are isomorphic to A1

k. Let L be an invertible sheaf on X and let Li be
the restriction of L to Ui. As Pic(Ui) = 0 it follows that Li ' OUi

.
Suppose that {p1, p2} are the double points of X so that

X − {p1, p2} = Ui − {pi}.
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The section 1 on U1 corresponds to a non-vanishing section f(x) on U2.
It follows that f(x) = axm, for some positive integer m and a non-zero
scalar a. Multiplying through by automorphisms of U2 which fix p2 we
can assume that a = 1. Let’s call this invertible sheaf Lm. If we tensor
Lm with Ln we get the global section 1 on U1 and the global section
f(x) = xm+n on U2. It follows that Pic(X) = Z (the inverse of the Lm
is the invertible sheaf L−m which has a global section which restricts
to xm on U1 and 1 on U2).
Now let’s consider if any of these line bundles are ample. By symmetry
we may suppose that m ≥ 0. Sections of Lm correspond to pairs g(x)
on U1 and xmg(x) on U2, where g(x) is a polynomial. There are two
cases. If m > 0 then this section always vanishes at p2. If m = 0
then this section only vanishes at p1 if g(x) has a zero at p1, in which
case the section also vanishes at p2. Either way, Lm does not separate
points.
5. (a) Let F be a coherent sheaf. By assumption there is an integer
n0 such that F ⊗ Ln is globally generated for all n ≥ n0. Pick x ∈ X.
Then we may find l1, l2, . . . , lk ∈ H0(X,F⊗Ln) whose images generate
the stalk at x. Pick m ∈M not vanishing at x. Then mnl1, m

nl2, . . . ,
mnlk are naturally global sections of F ⊗Ln⊗Mn which generate the
stalk at x. Hence F ⊗ Ln ⊗Mn is globally generated so that L ⊗M
is ample.
(b) As L is ample, we may pick l so thatM⊗Ll is globally generated.
If m > 0 is any positive integer, then

M⊗Ll+m =M⊗Ll ⊗ Lm,

is ample by (a). So M⊗Ln is ample for any n > l.
(c) Since OX is globally generated we may find k > 0 so that Mk is
globally generated. As L is ample then so is Lk. But then

(L ⊗M)k = Lk ⊗Mk,

is ample by (a). It follows that

L ⊗M,

is ample.
(d) By assumption we may find sections l1, l2, . . . , la ∈ H0(X,L) and
m1,m2, . . . ,mb ∈ H0(X,M) such that Xli and Xmj

are an open affine
cover of X. Consider the sections limj ∈ H0(X,L ⊗M). Note that
Xij = Xli ∩Xmj

is affine. Since mj is not zero on Xij, the images

li′mj

limj

=
li′

li
,
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generate H0(Xij,OX), since the images even generate H0(Xli ,OX). It
follows that the sections limj define an immersion of X into Pn into
projective space such that the pullback of OPn(1) is L⊗M. But then
L ⊗M is very ample.
(e) First of all we know that there is a positive integer m such that Lm
is very ample. On the other hand, by the definition of ample, we know
that there is an integer m0 such that Ln is globally generated for all
n ≥ m0. Let n0 = m0 +m. If n ≥ n0 +m then

Ln = Ln−m ⊗ Lm,
is very ample by (d).
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