1. (i) Call a line **standard** if it is either horizontal or vertical.

It is expedient to prove an even stronger result. We prove that if \(f: U \rightarrow \mathbb{C} \) is any function, where \(U \) is the complement of finitely many standard lines, which restricts to a polynomial on any standard line contained in \(U \), then \(f \) is a polynomial. We will be somewhat sloppy and say that a standard line is contained in \(U \) if it is not one of the deleted lines (strictly speaking, only the line minus finitely many points lies in \(U \)).

Note that if \(V \subset U \) is obtained from \(U \) by deleting finitely many more standard lines and \(f|_V \) is a polynomial, then \(f \) is a polynomial. Indeed \(f|_V \) extends to a polynomial function \(g: U \rightarrow \mathbb{C} \). If \(l \) is a line in \(U \) then \(f|_l \) and \(g|_l \) agree on an open subset of the line and so are equal. But then \(f = g \).

Let \(d \) be the smallest positive integer such that there are uncountably many real numbers \(r \) such that the restriction of \(f \) to the vertical line \(x = r \) is a polynomial of degree at most \(d \) and there are uncountably many real numbers \(s \) such that the restriction of \(f \) to the horizontal line \(y = s \) is a polynomial of degree at most \(d \).

We proceed by induction on \(d \). Suppose that \(d < 0 \), so that \(f(x,y) \) restricts to the zero function on infinitely many horizontal and infinitely many vertical lines. If \(l \) is any standard line contained in \(U \) then the restriction of \(f \) to \(l \) is a polynomial with infinitely many zeroes, so that \(f \) must be the zero function, which is represented by the zero polynomial.

Suppose that \(d \geq 0 \). Note that the change of coordinates \(x \rightarrow x - a \) does not change the property that \(U \) is the complement of finitely many standard lines, that \(f \) restricted to any standard line is a polynomial and it also does not change the value of \(d \). So we might as well assume that the \(x \)-axis is contained in \(U \) and \(f(x,0) \) is a polynomial of degree at most \(d \). Let \(g(x,y) = f(x,y) - f(x,0) \). Then the restriction of \(g(x,y) \) to every vertical line is a polynomial in \(y \) which vanishes at the origin. Let \(V \subset U \) be the set obtained by deleting the line \(y = 0 \). Let

\[
 h: V \rightarrow \mathbb{C},
\]

be the function \(h(x,y) = f(x,y)/y \). Then \(V \) is obtained from \(\mathbb{C}^2 \) by deleting finitely many standard lines, \(h(x,y) \) is a function which when restricted to any standard line in \(V \) is a polynomial, which has degree
at most $d-1$ on uncountably many standard lines. By induction $h(x, y)$ is a polynomial function. It follows that $f(x, y) = y h(x, y) + f(x, 0)$ is a polynomial function on V, whence on U. Thus $P(\mathbb{C})$ is true.

(ii) Enumerate, c_1, c_2, \ldots the points of \mathbb{Q} and let $h_n(y)$ (respectively $v_n(x)$) be the polynomial which vanishes on the first n horizontal (respectively vertical) lines. Let

$$f(x, y) = \sum_{i=0}^{\infty} h_i(y)v_i(x).$$

It is clear that $f(x, y)$ is not a polynomial. But suppose we pick a horizontal line, given by, $y = b$. Then $b = c_n$ for some n and so

$$f(x, b) = \sum_{i \leq n} h_i(b)v_i(x),$$

so that $f(x, b)$ is a polynomial. By symmetry the restriction of $f(x, y)$ to any vertical line is a polynomial. So $P(\mathbb{Q})$ fails.

(iii) Clear, from (i) and (ii) and the Lefschetz principle.

2. (i) Let $\phi \in V$, $\psi \in V$ and let $\lambda \in k$. Then

$$\phi: z \rightarrow X,$$

is a morphism of schemes over k, such that the unique point of z goes to x. But then ϕ corresponds to a morphism of local rings over k,

$$f: \mathcal{O}_{X, x} \rightarrow k[\epsilon]/(\epsilon^2).$$

Similarly suppose that ψ corresponds to g. Note that the function

$$m_\lambda: \frac{k[\epsilon]}{(\epsilon^2)} \rightarrow \frac{k[\epsilon]}{(\epsilon^2)} \quad \text{given by} \quad a + b\epsilon \rightarrow a + \lambda b\epsilon,$$

is a morphism of local rings, which is an isomorphism if and only if $\lambda \neq 0$. Let $\lambda \phi$ be the morphism of schemes corresponding to the morphism of local rings $m_\lambda \circ f$. Similarly, define a map

$$\alpha: \frac{k[\epsilon_1]}{(\epsilon_1^2)} \otimes_k \frac{k[\epsilon_2]}{(\epsilon_2^2)} \rightarrow \frac{k[\epsilon]}{(\epsilon^2)},$$

by sending both ϵ_1 and ϵ_2 to ϵ and extend by linearity to get a morphism of local rings. Composing with the natural map

$$(f, g): \mathcal{O}_{X, x} \rightarrow \frac{k[\epsilon_1]}{(\epsilon_1^2)} \otimes_k \frac{k[\epsilon_2]}{(\epsilon_2^2)},$$

we get a morphism of local rings and this defines a morphism

$$\phi + \psi: z \rightarrow X.$$
This defines an operation of scalar multiplication and addition of vectors, which clearly satisfy the axioms for a vector space.

(ii) If $\phi \in T_x X$ and
\[
\phi: O_{X,x} \longrightarrow k[\epsilon]/(\epsilon^2),
\]
is the corresponding morphism of local rings, then the kernel of ϕ contains m^2. On the other hand, the inverse image of $\langle \epsilon \rangle$ is by definition contained in m. It follows that we get a linear map of vector spaces
\[
\frac{m}{m^2} \longrightarrow k[\epsilon] \simeq k,
\]
that is, an element of the dual space
\[
\left(\frac{m}{m^2} \right)^*,
\]
and it is not hard to see that this assignment induces a bijection.

2. 1. By assumption there are open subsets U and V and isomorphisms $L|_U \simeq O_U$, $M|_V \simeq O_V$. Passing to the open subset $U \cap V$ we may as well assume that $L = M = O_X$. It suffices to check that the map is an isomorphism on stalks. Suppose that $x \in X$ and let $A = O_{X,x}$. Then A is a local ring and we are given a surjective A-module homomorphism $\phi: A \longrightarrow A$. ϕ is given by multiplication by an element a of A. Suppose that $\phi(b) = 1$. Then $ab = 1$ and so a is a unit and ϕ is an isomorphism. Thus ϕ is an isomorphism on stalks and f is an isomorphism.

2. Suppose that $m > n$. As $\dim V \leq n + 1$ it follows that t_i is a linear combination of the other sections, for some $1 \leq i \leq m$. Let $\pi: \mathbb{P}^n \longrightarrow \mathbb{P}^{n-1}$ be the projection map which drop the ith coordinate. The composition
\[
\pi \circ \phi: X \longrightarrow \mathbb{P}^{n-1},
\]
is the morphism given by $t_0, t_1, \ldots, \hat{t}_i, \ldots, t_n$. So we may assume $m = n$ by induction on $m - n$.

Suppose first that $\dim |V| = \dim V - 1 = n$. In this case both s_1, s_2, \ldots, s_n and t_1, t_2, \ldots, t_n are bases of V. So there is a unique matrix $A = (a_{ij})$ such that
\[
t_i = \sum a_{ij} s_j.
\]
This matrix corresponds to an isomorphism $\sigma: \mathbb{P}^n \longrightarrow \mathbb{P}^n$ and it is clear that $\psi = \sigma \circ \phi$.

In general the image of X is contained in linear spaces Λ_i, $i = 1$ and 2 of dimension $\dim |V| = \dim V - 1$. Pick complimentary linear subspaces Λ'_i. We have already exhibited an isomorphism $\sigma_1: \Lambda_1 \longrightarrow \Lambda_2$, such that $\psi = \sigma_1 \circ \phi$ and we may extend this to an isomorphism of $\sigma: \mathbb{P}^n \longrightarrow \mathbb{P}^n$ such that $\sigma(\Lambda'_1) = \Lambda'_2$ and $\psi = \sigma \circ \phi$.

3. (a) Let \(\mathcal{L} = \phi^* \mathcal{O}_{\mathbb{P}^n}(1) \). As \(\text{Pic}(\mathbb{P}^n) = \mathbb{Z} \) it follows that \(\mathcal{L} = \mathcal{O}_{\mathbb{P}^n}(d) \), for some integer \(d \). As \(\mathcal{L} \) is globally generated \(d \geq 0 \). If \(d = 0 \) then \(\phi(\mathbb{P}^n) \) is a point. Otherwise \(d > 0 \) and \(\mathcal{L} \) is ample. Suppose that \(C \subset \mathbb{P}^n \) is an irreducible curve. As \(\mathcal{L} \) is ample, \(\mathcal{L}|_C \) is not the trivial invertible sheaf. If \(x \in C \) then we may find a section \(\sigma \in H^0(\mathbb{P}^n, \mathcal{L}) \) which does not vanish at \(x \). As \(\mathcal{L}|_C \) is not the trivial invertible sheaf, \(\sigma|_C \) must vanish somewhere. Therefore the image of \(C \) is curve. Let \(X = \phi(\mathbb{P}^n) \). If \(\dim X < n \), then the fibres of \(\phi: \mathbb{P}^n \to X \) are positive dimensional. But then the fibres must contain curves \(C \) (just cut by hyperplanes) which are sent to a point, a contradiction.

(b) As stated, this is obviously false. Let \(\phi: \mathbb{P}^1 \to \mathbb{P}^2 \) be the morphism

\[
[S : T] \mapsto [S : S : T].
\]

It is clear in this case that \(d = 1 \). The 1-uple embedding is the identity. But then we cannot hope to project from \(\mathbb{P}^1 \) down to \(\mathbb{P}^2 \).

So let’s assume that the image of \(\phi \) is non-degenerate, that is, not contained in a hyperplane. \(\phi \) is given by a linear system. It follows that there is an invertible sheaf \(\mathcal{L} \) and a collection of sections \(s_1, s_2, \ldots, s_a \subset H^0(\mathbb{P}^n, \mathcal{L}) \). Since \(\text{Pic}(\mathbb{P}^n) \approx \mathbb{Z} \), generated by \(\mathcal{O}_{\mathbb{P}^n}(1) \), it follows that \(\mathcal{L} = \mathcal{O}_{\mathbb{P}^n}(d) \), up to isomorphism. Let \(t_0, t_1, \ldots, t_N \) be the standard basis of \(H^0(\mathbb{P}^n, \mathcal{O}_{\mathbb{P}^n}(d)) \) given by monomials of degree \(d \). Then the induced morphism is the \(d \)-uple embedding \(\mathbb{P}^n \to \mathbb{P}^N \). Let

\[V \subset H^0(\mathbb{P}^n, \mathcal{L}), \]

be the subvector space spanned by \(s_1, s_2, \ldots, s_a \). Our assumption that \(\phi \) is non-degenerate means that \(s_1, s_2, \ldots, s_a \) are a basis of \(V \). We may extend this to a basis of \(H^0(\mathbb{P}^n, \mathcal{L}) \) and this defines an automorphism \(\sigma \) of \(\mathbb{P}^N \). Projecting down to the first \(a+1 \) coordinates gives the morphism \(\phi \). Finally note that applying an automorphism of \(\mathbb{P}^N \) is the same as projecting from the linear space \(L \), which is the image under \(\sigma \) of the space spanned by the last \(N-a-1 \) coordinates and an automorphism of \(\mathbb{P}^n \).

4. (a) If \(\mathcal{L} \) is ample then \(\mathcal{L}^m \) is very ample, for some positive integer \(m \). But then there is an immersion \(X \to \mathbb{P}^n \) for some positive integer \(n \) and it follows that \(X \) is separated.

(b) By assumption there are two open subsets \(U_1 \) and \(U_2 \) both of which are isomorphic to \(\mathbb{A}_k^1 \). Let \(\mathcal{L} \) be an invertible sheaf on \(X \) and let \(\mathcal{L}_i \) be the restriction of \(\mathcal{L} \) to \(U_i \). As \(\text{Pic}(U_i) = 0 \) it follows that \(\mathcal{L}_i \simeq \mathcal{O}_{U_i} \). Suppose that \(\{p_1, p_2\} \) are the double points of \(X \) so that

\[X - \{p_1, p_2\} = U_i - \{p_i\}. \]
The section 1 on U_1 corresponds to a non-vanishing section $f(x)$ on U_2. It follows that $f(x) = ax^m$, for some positive integer m and a non-zero scalar a. Multiplying through by automorphisms of U_2 which fix p_2 we can assume that $a = 1$. Let’s call this invertible sheaf \mathcal{L}_m. If we tensor \mathcal{L}_m with \mathcal{L}_n we get the global section 1 on U_1 and the global section $f(x) = x^{m+n}$ on U_2. It follows that Pic(X) = \mathbb{Z} (the inverse of the \mathcal{L}_m is the invertible sheaf \mathcal{L}_{-m} which has a global section which restricts to x^m on U_1 and 1 on U_2).

Now let’s consider if any of these line bundles are ample. By symmetry we may suppose that $m \geq 0$. Sections of \mathcal{L}_m correspond to pairs $g(x)$ on U_1 and $x^m g(x)$ on U_2, where $g(x)$ is a polynomial. There are two cases. If $m > 0$ then this section always vanishes at p_2. If $m = 0$ then this section only vanishes at p_1 if $g(x)$ has a zero at p_1, in which case the section also vanishes at p_2. Either way, \mathcal{L}_m does not separate points.

5. (a) Let F be a coherent sheaf. By assumption there is an integer n_0 such that $F \otimes \mathcal{L}^n$ is globally generated for all $n \geq n_0$. Pick $x \in X$. Then we may find $l_1, l_2, \ldots, l_k \in H^0(X, F \otimes \mathcal{L}^n)$ whose images generate the stalk at x. Pick $m \in \mathcal{M}$ not vanishing at x. Then $m^n l_1, m^n l_2, \ldots, m^n l_k$ are naturally global sections of $F \otimes \mathcal{L}^n \otimes \mathcal{M}^n$ which generate the stalk at x. Hence $F \otimes \mathcal{L}^n \otimes \mathcal{M}^n$ is globally generated so that $\mathcal{L} \otimes \mathcal{M}$ is ample.

(b) As \mathcal{L} is ample, we may pick l so that $\mathcal{M} \otimes \mathcal{L}^l$ is globally generated. If $m > 0$ is any positive integer, then

$$\mathcal{M} \otimes \mathcal{L}^{l+m} = \mathcal{M} \otimes \mathcal{L}^l \otimes \mathcal{L}^m,$$

is ample by (a). So $\mathcal{M} \otimes \mathcal{L}^n$ is ample for any $n > l$.

(c) Since \mathcal{O}_X is globally generated we may find $k > 0$ so that \mathcal{M}^k is globally generated. As \mathcal{L} is ample then so is \mathcal{L}^k. But then

$$(\mathcal{L} \otimes \mathcal{M})^k = \mathcal{L}^k \otimes \mathcal{M}^k,$$

is ample by (a). It follows that

$$\mathcal{L} \otimes \mathcal{M},$$

is ample.

(d) By assumption we may find sections $l_1, l_2, \ldots, l_a \in H^0(X, \mathcal{L})$ and $m_1, m_2, \ldots, m_b \in H^0(X, \mathcal{M})$ such that X_{l_i} and X_{m_j} are an open affine cover of X. Consider the sections $l_i m_j \in H^0(X, \mathcal{L} \otimes \mathcal{M})$. Note that $X_{ij} = X_{l_i} \cap X_{m_j}$ is affine. Since m_j is not zero on X_{ij}, the images

$$\frac{l_i m_j}{l_i} = \frac{l_i}{l_i}.$$
generate \(H^0(X_{ij}, \mathcal{O}_X) \), since the images even generate \(H^0(X_{il}, \mathcal{O}_X) \). It follows that the sections \(l_i m_j \) define an immersion of \(X \) into \(\mathbb{P}^n \) into projective space such that the pullback of \(\mathcal{O}_{\mathbb{P}^n}(1) \) is \(\mathcal{L} \otimes \mathcal{M} \). But then \(\mathcal{L} \otimes \mathcal{M} \) is very ample.

(e) First of all we know that there is a positive integer \(m \) such that \(\mathcal{L}^m \) is very ample. On the other hand, by the definition of ample, we know that there is an integer \(m_0 \) such that \(\mathcal{L}^n \) is globally generated for all \(n \geq m_0 \). Let \(n_0 = m_0 + m \). If \(n \geq n_0 + m \) then

\[
\mathcal{L}^n = \mathcal{L}^{n-m} \otimes \mathcal{L}^m,
\]

is very ample by (d).