MODEL ANSWERS TO HWK \#3

1. (i) Call a line standard if it is either horizontal or vertical.

It is expedient to prove an even stronger result. We prove that if $f: U \longrightarrow \mathbb{C}$ is any function, where U is the complement of finitely many standard lines, which restricts to a polynomial on any standard line contained in U, then f is a polynomial. We will be somewhat sloppy and say that a standard line is contained in U if it is not one of the deleted lines (strictly speaking, only the line minus finitely many points lies in U).
Note that if $V \subset U$ is obtained from U by deleting finitely many more standard lines and $\left.f\right|_{V}$ is a polynomial, then f is a polynomial. Indeed $\left.f\right|_{V}$ extends to a polynomial function $g: U \longrightarrow \mathbb{C}$. If l is a line in U then $\left.f\right|_{l}$ and $\left.g\right|_{l}$ agree on an open subset of the line and so are equal. But then $f=g$.
Let d be the smallest positive integer such that there are uncountably many real numbers r such that the restriction of f to the vertical line $x=r$ is a polynomial of degree at most d and there are uncountably many real numbers s such that the restriction of f to the horizontal line $y=s$ is a polynomial of degree at most d.
We proceed by induction on d. Suppose that $d<0$, so that $f(x, y)$ restricts to the zero function on infinitely many horizontal and infinitely many vertical lines. If l is any standard line contained in U then the restriction of f to l is a polynomial with infinitely many zeroes, so that f must be the zero function, which is represented by the zero polynomial.
Suppose that $d \geq 0$. Note that the change of coordinates $x \longrightarrow x-a$ does not change the property that U is the complement of finitely many standard lines, that f restricted to any standard line is a polynomial and it also does not change the value of d. So we might as well assume that the x-axis is contained in U and $f(x, 0)$ is a polynomial of degree at most d. Let $g(x, y)=f(x, y)-f(x, 0)$. Then the restriction of $g(x, y)$ to every vertical line is a polynomial in y which vanishes at the origin. Let $V \subset U$ be the set obtained by deleting the line $y=0$. Let

$$
h: V \longrightarrow \mathbb{C},
$$

be the function $h(x, y)=f(x, y) / y$. Then V is obtained from \mathbb{C}^{2} by deleting finitely many standard lines, $h(x, y)$ is a function which when restricted to any standard line in V is a polynomial, which has degree
at most $d-1$ on uncountably many standard lines. By induction $h(x, y)$ is a polynomial function. It follows that $f(x, y)=y h(x, y)+f(x, 0)$ is a polynomial function on V, whence on U. Thus $P(\mathbb{C})$ is true.
(ii) Enumerate, c_{1}, c_{2}, \ldots the points of $\overline{\mathbb{Q}}$ and let $h_{n}(y)$ (respectively $\left.v_{n}(x)\right)$ be the polynomial which vanishes on the first n horizontal (respectively vertical) lines. Let

$$
f(x, y)=\sum_{i=0}^{\infty} h_{i}(y) v_{i}(x)
$$

It is clear that $f(x, y)$ is not a polynomial. But suppose we pick a horizontal line, given by, $y=b$. Then $b=c_{n}$ for some n and so

$$
f(x, b)=\sum_{i \leq n} h_{i}(b) v_{i}(x),
$$

so that $f(x, b)$ is a polynomial. By symmetry the restriction of $f(x, y)$ to any vertical line is a polynomial. So $P(\overline{\mathbb{Q}})$ fails.
(iii) Clear, from (i) and (ii) and the Lefschetz principle.
2. (i) Let $\phi \in V, \psi \in V$ and let $\lambda \in k$. Then

$$
\phi: z \longrightarrow X
$$

is a morphism of schemes over k, such that the unique point of z goes to x. But then ϕ corresponds to a morphism of local rings over k,

$$
f: \mathcal{O}_{X, x} \longrightarrow \frac{k[\epsilon]}{\left\langle\epsilon^{2}\right\rangle} .
$$

Similarly suppose that ψ corresponds to g. Note that the function

$$
m_{\lambda}: \frac{k[\epsilon]}{\left\langle\epsilon^{2}\right\rangle} \longrightarrow \frac{k[\epsilon]}{\left\langle\epsilon^{2}\right\rangle} \quad \text { given by } \quad a+b \epsilon \longrightarrow a+\lambda b \epsilon,
$$

is a morphism of local rings, which is an isomorphism if and only if $\lambda \neq 0$. Let $\lambda \phi$ be the morphism of schemes corresponding to the morphism of local rings $m_{\lambda} \circ f$. Similarly, define a map

$$
\alpha: \frac{k\left[\epsilon_{1}\right]}{\left\langle\epsilon_{1}^{2}\right\rangle} \otimes_{k} \frac{k\left[\epsilon_{2}\right]}{\left\langle\epsilon_{2}^{2}\right\rangle} \longrightarrow \frac{k[\epsilon]}{\left\langle\epsilon^{2}\right\rangle},
$$

by sending both ϵ_{1} and ϵ_{2} to ϵ and extend by linearity to get a morphism of local rings. Composing with the natural map

$$
(f, g): \mathcal{O}_{X, x} \longrightarrow \frac{k\left[\epsilon_{1}\right]}{\left\langle\epsilon_{1}^{2}\right\rangle} \underset{k}{\otimes} \frac{k\left[\epsilon_{2}\right]}{\left\langle\epsilon_{2}^{2}\right\rangle},
$$

we get a morphism of local rings and this defines a morphism

$$
\phi+\psi: \underset{2}{z} \longrightarrow X
$$

This defines an operation of scalar multiplication and addition of vectors, which clearly satisfy the axioms for a vector space.
(ii) If $\phi \in T_{x} X$ and

$$
f: \mathcal{O}_{X, x} \longrightarrow \frac{k[\epsilon]}{\left\langle\epsilon^{2}\right\rangle},
$$

is the corresponding morphism of local rings, then the kernel of f contains \mathfrak{m}^{2}. On the other hand, the inverse image of $\langle\epsilon\rangle$ is by definition contained in \mathfrak{m}. It follows that we get a linear map of vector spaces

$$
\frac{\mathfrak{m}}{\mathfrak{m}^{2}} \longrightarrow k\langle\epsilon\rangle \simeq k,
$$

that is, an element of the dual space

$$
\left(\frac{\mathfrak{m}}{\mathfrak{m}^{2}}\right)^{*}
$$

and it is not hard to see that this assignment induces a bijection.
2. 1. By assumption there are open subsets U and V and isomorphisms $\left.\mathcal{L}\right|_{U} \simeq \mathcal{O}_{U},\left.\mathcal{M}\right|_{V} \simeq \mathcal{O}_{V}$. Passing to the open subset $U \cap V$ we may as well assume that $\mathcal{L}=\mathcal{M}=\mathcal{O}_{X}$. It suffices to check that the map is an isomorphism on stalks. Suppose that $x \in X$ and let $A=\mathcal{O}_{X, x}$. Then A is a local ring and we are given a surjective A-module homomorphism $\phi: A \longrightarrow A . \phi$ is given by multiplication by an element a of A. Suppose that $\phi(b)=1$. Then $a b=1$ and so a is a unit and ϕ is an isomorphism. Thus f is an isomorphism on stalks and f is an isomorphism.
2. Suppose that $m>n$. As $\operatorname{dim} V \leq n+1$ it follows that t_{i} is a linear combination of the other sections, for some $1 \leq i \leq m$. Let $\pi: \mathbb{P}^{m} \longrightarrow \mathbb{P}^{m-1}$ be the projection map which drop the i th coordinate. The composition

$$
\pi \circ \phi: X \longrightarrow \mathbb{P}^{m-1}
$$

is the morphism given by $t_{0}, t_{1}, \ldots, \hat{t}_{i}, \ldots, t_{n}$. So we may assume $m=n$ by induction on $m-n$.
Suppose first that $\operatorname{dim}|V|=\operatorname{dim} V-1=n$. In this case both $s_{1}, s_{2}, \ldots, s_{n}$ and $t_{1}, t_{2}, \ldots, t_{n}$ are bases of V. So there is a unique matrix $A=\left(a_{i j}\right)$ such that

$$
t_{i}=\sum a_{i j} s_{j}
$$

This matrix corresponds to an isomorphism $\sigma: \mathbb{P}^{n} \longrightarrow \mathbb{P}^{n}$ and it is clear that $\psi=\sigma \circ \phi$.
In general the image of X is contained in linear spaces $\Lambda_{i}, i=1$ and 2 of dimension $\operatorname{dim}|V|=\operatorname{dim} V-1$. Pick complimentary linear subspaces Λ_{i}^{\prime}. We have already exhibited an isomorphism $\sigma_{1}: \Lambda_{1} \longrightarrow \Lambda_{2}$, such that $\psi=\sigma_{1} \circ \phi$ and we may extend this to an isomorphism of $\sigma: \mathbb{P}^{n} \longrightarrow$ \mathbb{P}^{n} such that $\sigma\left(\Lambda_{1}^{\prime}\right)=\Lambda_{2}^{\prime}$ and $\psi=\sigma \circ \phi$.
3. (a) Let $\mathcal{L}=\phi^{*} \mathcal{O}_{\mathbb{P}^{n}}(1)$. As $\operatorname{Pic}\left(\mathbb{P}^{n}\right)=\mathbb{Z}$ it follows that $\mathcal{L}=\mathcal{O}_{\mathbb{P}^{n}}(d)$, for some integer d. As \mathcal{L} is globally generated $d \geq 0$. If $d=0$ then $\phi\left(\mathbb{P}^{n}\right)$ is a point. Otherwise $d>0$ and \mathcal{L} is ample. Suppose that $C \subset \mathbb{P}^{n}$ is an irreducible curve. As \mathcal{L} is ample, $\left.\mathcal{L}\right|_{C}$ is not the trivial invertible sheaf. If $x \in C$ then we may find a section $\sigma \in H^{0}\left(\mathbb{P}^{n}, \mathcal{L}\right)$ which does not vanish at x. As $\left.\mathcal{L}\right|_{C}$ is not the trivial invertible sheaf, $\left.\sigma\right|_{C}$ must vanish somewhere. Therefore the image of C is curve. Let $X=\phi\left(\mathbb{P}^{n}\right)$. If $\operatorname{dim} X<n$, then the fibres of $\phi: \mathbb{P}^{n} \longrightarrow X$ are positive dimensional. But then the fibres must contain curves C (just cut by hyperplanes) which are sent to a point, a contradiction.
(b) As stated, this is obviously false. Let $\phi: \mathbb{P}^{1} \longrightarrow \mathbb{P}^{2}$ be the morphism

$$
[S: T] \longrightarrow[S: S: T] .
$$

It is clear in this case that $d=1$. The 1-uple embedding is the identity. But then we cannot hope to project from \mathbb{P}^{1} down to \mathbb{P}^{2}.
So let's assume that the image of ϕ is non-degenerate, that is, not contained in a hyperplane. ϕ is given by a linear system. It follows that there is an invertible sheaf \mathcal{L} and a collection of sections $s_{1}, s_{2}, \ldots, s_{a} \subset$ $H^{0}\left(\mathbb{P}^{n}, \mathcal{L}\right)$. Since $\operatorname{Pic}\left(\mathbb{P}^{n}\right) \simeq \mathbb{Z}$, generated by $\mathcal{O}_{\mathbb{P}^{n}}(1)$, it follows that $\mathcal{L}=\mathcal{O}_{\mathbb{P}^{n}}(d)$, up to isomorphism. Let $t_{0}, t_{1}, \ldots, t_{N}$ be the standard basis of $H^{0}\left(\mathbb{P}^{n}, \mathcal{O}_{\mathbb{P}^{n}}(d)\right)$ given by monomials of degree d. Then the induced morphism is the d-uple embedding $\mathbb{P}^{n} \longrightarrow \mathbb{P}^{N}$. Let

$$
V \subset H^{0}\left(\mathbb{P}^{n}, \mathcal{L}\right)
$$

be the subvector space spanned by $s_{1}, s_{2}, \ldots, s_{a}$. Our assumption that ϕ is non-degenerate means that $s_{1}, s_{2}, \ldots, s_{a}$ are a basis of V. We may extend this to a basis of $H^{0}\left(\mathbb{P}^{n}, \mathcal{L}\right)$ and this defines an automorphism σ of \mathbb{P}^{N}. Projecting down to the first $a+1$ coordinates gives the morphism ϕ. Finally note that applying an automorphism of \mathbb{P}^{N} is the same as projecting from the linear space L, which is the image under σ of the space spanned by the last $N-a-1$ coordinates and an automorphism of \mathbb{P}^{n}.
4. (a) If \mathcal{L} is ample then \mathcal{L}^{m} is very ample, for some positive integer m. But then there is an immersion $X \longrightarrow \mathbb{P}_{k}^{n}$ for some positive integer n and it follows that X is separated.
(b) By assumption there are two open subsets U_{1} and U_{2} both of which are isomorphic to \mathbb{A}_{k}^{1}. Let \mathcal{L} be an invertible sheaf on X and let \mathcal{L}_{i} be the restriction of \mathcal{L} to U_{i}. As $\operatorname{Pic}\left(U_{i}\right)=0$ it follows that $\mathcal{L}_{i} \simeq \mathcal{O}_{U_{i}}$. Suppose that $\left\{p_{1}, p_{2}\right\}$ are the double points of X so that

$$
X-\left\{p_{1}, p_{2}\right\}=U_{i}-\left\{p_{i}\right\}
$$

The section 1 on U_{1} corresponds to a non-vanishing section $f(x)$ on U_{2}. It follows that $f(x)=a x^{m}$, for some positive integer m and a non-zero scalar a. Multiplying through by automorphisms of U_{2} which fix p_{2} we can assume that $a=1$. Let's call this invertible sheaf \mathcal{L}_{m}. If we tensor \mathcal{L}_{m} with \mathcal{L}_{n} we get the global section 1 on U_{1} and the global section $f(x)=x^{m+n}$ on U_{2}. It follows that $\operatorname{Pic}(X)=\mathbb{Z}$ (the inverse of the \mathcal{L}_{m} is the invertible sheaf \mathcal{L}_{-m} which has a global section which restricts to x^{m} on U_{1} and 1 on U_{2}).
Now let's consider if any of these line bundles are ample. By symmetry we may suppose that $m \geq 0$. Sections of \mathcal{L}_{m} correspond to pairs $g(x)$ on U_{1} and $x^{m} g(x)$ on U_{2}, where $g(x)$ is a polynomial. There are two cases. If $m>0$ then this section always vanishes at p_{2}. If $m=0$ then this section only vanishes at p_{1} if $g(x)$ has a zero at p_{1}, in which case the section also vanishes at p_{2}. Either way, \mathcal{L}_{m} does not separate points.
5. (a) Let \mathcal{F} be a coherent sheaf. By assumption there is an integer n_{0} such that $\mathcal{F} \otimes \mathcal{L}^{n}$ is globally generated for all $n \geq n_{0}$. Pick $x \in X$. Then we may find $l_{1}, l_{2}, \ldots, l_{k} \in H^{0}\left(X, \mathcal{F} \otimes \mathcal{L}^{n}\right)$ whose images generate the stalk at x. Pick $m \in \mathcal{M}$ not vanishing at x. Then $m^{n} l_{1}, m^{n} l_{2}, \ldots$, $m^{n} l_{k}$ are naturally global sections of $\mathcal{F} \otimes \mathcal{L}^{n} \otimes \mathcal{M}^{n}$ which generate the stalk at x. Hence $\mathcal{F} \otimes \mathcal{L}^{n} \otimes \mathcal{M}^{n}$ is globally generated so that $\mathcal{L} \otimes \mathcal{M}$ is ample.
(b) As \mathcal{L} is ample, we may pick l so that $\mathcal{M} \otimes \mathcal{L}^{l}$ is globally generated. If $m>0$ is any positive integer, then

$$
\mathcal{M} \otimes \mathcal{L}^{l+m}=\mathcal{M} \otimes \mathcal{L}^{l} \otimes \mathcal{L}^{m}
$$

is ample by (a). So $\mathcal{M} \otimes \mathcal{L}^{n}$ is ample for any $n>l$.
(c) Since \mathcal{O}_{X} is globally generated we may find $k>0$ so that \mathcal{M}^{k} is globally generated. As \mathcal{L} is ample then so is \mathcal{L}^{k}. But then

$$
(\mathcal{L} \otimes \mathcal{M})^{k}=\mathcal{L}^{k} \otimes \mathcal{M}^{k}
$$

is ample by (a). It follows that

$$
\mathcal{L} \otimes \mathcal{M},
$$

is ample.
(d) By assumption we may find sections $l_{1}, l_{2}, \ldots, l_{a} \in H^{0}(X, \mathcal{L})$ and $m_{1}, m_{2}, \ldots, m_{b} \in H^{0}(X, \mathcal{M})$ such that $X_{l_{i}}$ and $X_{m_{j}}$ are an open affine cover of X. Consider the sections $l_{i} m_{j} \in H^{0}(X, \mathcal{L} \otimes \mathcal{M})$. Note that $X_{i j}=X_{l_{i}} \cap X_{m_{j}}$ is affine. Since m_{j} is not zero on $X_{i j}$, the images

$$
\frac{l_{i^{\prime}} m_{j}}{l_{i} m_{j}}=\frac{l_{i^{\prime}}}{l_{i}}
$$

generate $H^{0}\left(X_{i j}, \mathcal{O}_{X}\right)$, since the images even generate $H^{0}\left(X_{l_{i}}, \mathcal{O}_{X}\right)$. It follows that the sections $l_{i} m_{j}$ define an immersion of X into \mathbb{P}^{n} into projective space such that the pullback of $\mathcal{O}_{\mathbb{P}^{n}}(1)$ is $\mathcal{L} \otimes \mathcal{M}$. But then $\mathcal{L} \otimes \mathcal{M}$ is very ample.
(e) First of all we know that there is a positive integer m such that \mathcal{L}^{m} is very ample. On the other hand, by the definition of ample, we know that there is an integer m_{0} such that \mathcal{L}^{n} is globally generated for all $n \geq m_{0}$. Let $n_{0}=m_{0}+m$. If $n \geq n_{0}+m$ then

$$
\mathcal{L}^{n}=\mathcal{L}^{n-m} \otimes \mathcal{L}^{m}
$$

is very ample by (d).

