MODEL ANSWERS TO HWK #7

4.1 Let $\mathcal{U} = \{U_i\}$ be an open affine cover of X which is locally finite. Then $\mathcal{V} = \{V_i\}$ is an open affine cover of Y which is locally finite, where $V_i = f^{-1}(U_i)$. Note that, if I is a finite set of indices, then there are natural isomorphisms

$$H^0(U_I, \mathcal{F}) = H^0(V_I, f_* \mathcal{F}).$$

It follows that

$$H^*(\mathcal{U}, \mathcal{F}) \simeq H^*(\mathcal{V}, f_*\mathcal{F}).$$

But, by (II.5.8) we have that $f_*\mathcal{F}$ is quasi-coherent and so

$$H^*(X, \mathcal{F}) \simeq H^*(\mathcal{U}, \mathcal{F})$$
 and $H^*(Y, \mathcal{F}) \simeq H^*(\mathcal{V}, f_*\mathcal{F})$.

4.2 (a) Let M and L be the functions fields of X and Y (that is, the residue fields of the generic points of X and Y). Then M/L is a finite field extension. Pick a basis m_1, m_2, \ldots, m_r of the L-vector space M. Let $U = \operatorname{Spec} A \subset X$ be an open affine subset of X. Then M is the field of fractions of A. We may find $a_1, a_2, \ldots, a_r \in A$ such that $M = K(a_1, a_2, \dots, a_r)$. Define a morphism of sheaves

$$\mathcal{O}_X{}^r \longrightarrow \mathcal{K},$$

by sending (f_1, f_2, \ldots, f_r) to $\sum a_i f_i$. Let \mathcal{M} be the image. Then \mathcal{M} is a coherent sheaf as it is the image of a coherent sheaf. Almost by definition there is a morphism of sheaves

$$\mathcal{O}_Y f_* \mathcal{O}_X \longrightarrow$$

Taking the direct sum, pushing forward the map above and composing we get a morphism of \mathcal{O}_Y -modules,

$$\alpha \colon \mathcal{O}_Y^r \longrightarrow f_*\mathcal{M},$$

which is an isomorphism at the generic point, since then it reduces to the vector space isomorphism

$$L^r \longrightarrow M$$
.

(b) If we apply $\mathcal{H}om(\cdot,\mathcal{F})$ to α , we get a morphism of sheaves

$$\mathcal{H}om(f_*\mathcal{M},\mathcal{F})\longrightarrow \mathcal{F}^r,$$

which is certainly an isomorphism at the generic point. Note that

$$\mathcal{H}$$
om $(f_*\mathcal{M}, \mathcal{F}),$

is a coherent $\mathcal{A} = f_* \mathcal{O}_X$ -module. By (5.17e), there is a coherent \mathcal{O}_X -module \mathcal{G} such that

$$f_*\mathcal{G} = \mathcal{H}om(f_*\mathcal{M}, \mathcal{F}).$$

(c) Let $Y' \subset Y$ be a closed subscheme, let $X' \subset f^{-1}(Y')$ be a closed subset of the inverse such that the induced morphism $f' \colon X' \longrightarrow Y'$ is surjective. Note that $X' \subset X$ is affine, and f' is a finite morphism. Indeed, to check f' is finite, we may assume that $Y = \operatorname{Spec} B$ is affine and by assumption A is a finitely generated B-module. If I and J are the defining ideals of X' and Y', then $X' = \operatorname{Spec} A/I$, $Y' = \operatorname{Spec} B/J$ and it is clear that A/I is a finitely generated B/J-module.

Note that $f_{\text{red}} : X_{\text{red}} \longrightarrow Y_{\text{red}}$ is a surjective finite morphism of noetherian, separated and reduced schemes. As (3.1) implies that Y is affine if and only if Y_{red} is affine, we may assume that X and Y are reduced. Suppose that $Y' \subset Y$ is an irreducible component of Y. As f is surjective, there is an irreducible component X' of X which surjects to Y'. The induced morphism $f' : X' \longrightarrow Y$ is a surjective finite morphism of noetherian, separated and integral schemes. As (3.2) implies that Y is affine if and only if each irreducible component Y' is affine, we may assume that X and Y are integral. Let \mathcal{F} be a quasi-coherent sheaf on Y. We check that

$$H^i(Y, \mathcal{F}) = 0,$$

for all i > 0. By Noetherian induction and (3.7), we may suppose that

$$H^i(Y',\mathcal{G}) = 0,$$

for all proper closed subsets and all quasi-coherent sheaves \mathcal{G} . By (b), we may find an exact sequence

$$0 \longrightarrow \mathcal{R} \longrightarrow f_*\mathcal{G} \longrightarrow \mathcal{F}^r \longrightarrow \mathcal{Q} \longrightarrow 0,$$

where \mathcal{R} and \mathcal{Q} are quasi-coherent sheaves, supported on proper closed subsets of Y. By induction,

$$H^i(Y, \mathcal{F}^r) = H^i(Y, f_*\mathcal{G}),$$

and the last group is isomorphic to

$$H^i(X,\mathcal{G})$$

by (4.1). But this vanishes as X is affine and \mathcal{G} is quasi-coherent. Thus

$$H^i(Y,\mathcal{F})=0,$$

for all i > 0 and all quasi-coherent sheaves \mathcal{F} , and so Y is affine by (3.7).

4.3 Let $\mathcal{U} = \{U_x, U_y\}$, where U_x is the complement of the x-axis and U_y is the complement of the y-axis. Then U_x and U_y are both isomorphic

to $\mathbb{A}^1 \times (\mathbb{A}^1 - \{0\})$, so that they are both affine. The intersection of U_x and U_y is $(\mathbb{A}^1 - \{0\}) \times (\mathbb{A}^1 - \{0\})$, which is again affine. As \mathcal{O}_X is coherent, we have an isomorphism,

$$H^1(\mathcal{U}, \mathcal{O}_X) \simeq H^1(X, \mathcal{O}_X).$$

Now an element of $C^1(\mathcal{U}, \mathcal{O}_X)$ is nothing but a section of $H^0(U_x \cap$ U_y, \mathcal{O}_X). Since there are no triple intersections, every cochain is automatically a cocycle, so that

$$Z^{1}(\mathcal{U}, \mathcal{O}_{X}) = C^{1}(\mathcal{U}, \mathcal{O}_{X}) = k[x, y]_{xy}.$$

Now

$$C^0(\mathcal{U}, \mathcal{O}_X) = H^0(U_x, \mathcal{O}_X) \oplus H^0(U_y, \mathcal{O}_X).$$

Note that

$$H^0(U_x, \mathcal{O}_X) = k[x, y]_x$$
 and $H^0(U_y, \mathcal{O}_X) = k[x, y]_y$.

Thus

$$B^1(\mathcal{U}, \mathcal{O}_X) = k[x, y]_x + k[x, y]_y.$$

It follows that a basis of

$$H^1(X, \mathcal{O}_X),$$

is given by monomials of the form $x^i y^j$, where i < 0 and j < 0. In particular,

$$h^1(X, \mathcal{O}_X),$$

is not finite.

It is also interesting to calculate $H^1(X, \mathcal{O}_X)$ using the fact that X is toric. The fan F corresponding to X is the union of the two one dimensional cones spanned by e_1 and e_2 (but not including the cone spanned by e_1 and e_2) and the origin (which is a face of both one dimensional cones). Then the support of the fan F is

$$|F| = \{ (x,0) | x \ge 0 \} \cup \{ (0,y) | y \ge 0 \}.$$

The 0 divisor is T-Cartier and corresponds to the zero function on F. According to (15.6),

$$H^1(X, \mathcal{O}_X),$$

decomposes as a direct sum of eigenspaces, indexed by $u \in M$, where each piece is given by a local cohomology group,

$$H^1_{Z(u)}(|F|,\mathbb{C}).$$

The last group is isomorphic to the relative cohomology of the pair

$$H^1(|F|, Z(u), \mathbb{C}).$$

The long exact sequence for the pair $Z(u) \subset |F|$ is:

$$0 \longrightarrow H^0(|F|,|F|-Z(u),\mathbb{C}) \longrightarrow H^0(|F|-Z(u),\mathbb{C}) \longrightarrow H^0(|F|,\mathbb{C}) \longrightarrow H^0(|F|,\mathbb{C}) \longrightarrow H^1(|F|,|F|-Z(u),\mathbb{C}) \longrightarrow H^1(|F|-Z(u),\mathbb{C}) \longrightarrow H^1(|F|,\mathbb{C}) \longrightarrow 0.$$

Note that $H^0(|F|, \mathbb{C}) = \mathbb{C}$ and $H^1(|F| - Z(u), \mathbb{C})$ is always trivial. It follows that

$$H^1_{Z(u)}(|F|,\mathbb{C}),$$

is non-trivial, equal to \mathbb{C} , if and only if |F| = Z(u), if and only if u = (i, j), where $i \leq 0$ and $j \leq 0$.

4.5 As in the hint any invertible sheaf \mathcal{L} determines an element $l_{\mathcal{U}}$ of $H^1(\mathcal{U}, \mathcal{O}_X^*)$, where $\mathcal{L}|_{U_i}$ is trivial. If \mathcal{V} is a refinement of \mathcal{U} , then $\mathcal{L}|_{V_j}$ is certainly trivial, where $V_i \subset U_i$, and it is easy to check that

$$l_{\mathcal{V}} \in H^1(\mathcal{V}, \mathcal{O}_X^*),$$

is the same as the image of $l_{\mathcal{U}}$ under the natural map

$$H^1(\mathcal{U}, \mathcal{O}_X^*) \longrightarrow H^1(\mathcal{V}, \mathcal{O}_X^*).$$

Thus \mathcal{L} determines an element of the direct limit. Using (5.4) this gives us a map

$$\pi \colon \operatorname{Pic}(X) \longrightarrow H^1(X, \mathcal{O}_X^*).$$

If \mathcal{L} and \mathcal{M} are two invertible sheaves, then there is a common cover \mathcal{U} over which they are both trivial. It is easy to see that the image of $\mathcal{L} \otimes \mathcal{M}$ in $H^1(\mathcal{U}, \mathcal{O}_X^*)$ is $l_{\mathcal{U}} + m_{\mathcal{U}}$. But then π is a group homomorphism.

To give an element of $H^1(X, \mathcal{O}_X^*)$ is to give an element of $H^1(\mathcal{U}, \mathcal{O}_X^*)$, for some open cover \mathcal{U} . Using this 1-cocycle, one can construct an invertible sheaf, \mathcal{L} , which represents this 1-cocycle. Thus π is surjective. Suppose that \mathcal{L} is sent to zero. Then there is some open cover \mathcal{U} for which the corresponding 1-cocycle is a coboundary, represented by

$$\sigma_i \in H^0(U_i, \mathcal{O}_X^*).$$

But then σ defines a global non-vanishing section of \mathcal{L} , so that

$$\mathcal{L} \simeq \mathcal{O}_X$$
.

It follows that π is injective.

4.7 The union of the standard open affine subsets U_1 and U_2 contains every point of \mathbb{P}^2 except [1:0:0]. $U_{12} = U_1 \cap U_2$ is affine so that U, V and $U \cap V$ are affine subsets of X. Therefore $\mathcal{U} = \{U, V\}$ is certainly an open affine cover of X.

Let $x = x_0/x_2$ and $y = x_1/x_2$. Then $u = x_0/x_1 = xy^{-1}$ and $v = x_2/x_1 = y^{-1}$. We want to calculate the cohomology of the complex

$$\frac{k[u,v]}{\langle f(u,1,v)\rangle} \oplus \frac{k[x,y]}{\langle f(x,y,1)\rangle} \longrightarrow \frac{k[x,y,v]}{\langle f(x,y,1)}$$

We already know the kernel consists only of the constants. We check this explicitly.

Suppose that (g, h) is sent to zero. Then

$$g(u, v) - h(x, y) = \alpha f(x, y, 1),$$

for some polynomial α in x, y and y^{-1} . Note that the coefficient of x^d is non-zero in f, since [1:0:0] is not a point of the curve. We may write

$$\alpha = \beta + \gamma + \delta$$
,

where β is a polynomial whose only non-zero coefficients are of the form $x^i y^j$ where $i \leq -d-j$, for γ we have $j \geq 0$ and δ is what is left over, namely j < 0 and i > -d-j.

Note that $(g - \beta f, h + \gamma f)$ represents the same element of

$$\frac{k[u,v]}{\langle f(u,1,v)\rangle} \oplus \frac{k[x,y]}{\langle f(x,y,1)\rangle},$$

as (g, h). As βf and γf only have the constant term in common, it is enough to show $\delta = 0$.

Consider the set

$$N = \{ (i, j) | \text{the coefficient of } x^i y^j \text{ is non-zero in } \delta \}.$$

Pick $(i, j) \in N$ with i maximal and j minimal. Then the coefficient of $x^{i+d}y^j$ is non-zero in $g(u, v) - h(x, y) - \beta f - \gamma f$. So either $i + d \le -j$ or $j \ge 0$, both of which are impossible as $(i, j) \in N$.

Thus the kernel of the map is the space of constant polynomials.

We consider the cokernel. Each element of the cokernel corresponds to a polynomial in $k[x,y,y^{-1}]$. Monomials of the form x^iy^j where $j\geq 0$ are in the image as are monomials of the form x^iy^j , where $i\leq -j$. Since the coefficient of x^d is non-zero in f(x,y,1), it follows that elements of the cokernel are a sum of monomials x^iy^j where $0\leq i< d$ and -i< j< 0. There are

$$\frac{d-1}{d-2}2,$$

such monomials, and we have already checked that none of these monials are in the image of the coboundary map.