HWK \#3, DUE WEDNESDAY 01/29

1. Let

$$
\nu_{\alpha, \beta}: \mathbb{P}^{1} \longrightarrow \mathbb{P}^{3}
$$

be the morphism

$$
[S: T] \longrightarrow\left[S^{4}-\beta S^{3} T: S^{3} T-\beta S^{2} T^{2}: \alpha S^{2} T^{2}-S T^{3}: \alpha S T^{3}-T^{4}\right]
$$

where α and $\beta \in K$.
(i) Show that the curves $C_{\alpha, \beta}=\nu_{\alpha, \beta}\left(\mathbb{P}^{1}\right)$ are closed subsets.
(ii) Show that $C_{\alpha, \beta}$ lies on the surface $V(X W-Y Z)$.
(iii) Show that $C_{\alpha, \beta}$ is the zero locus of a bihomogeneous polynomial of type (1,3).
(iv) Show that $C_{\alpha, \beta}$ is the zero locus of one quadratic and two cubic polynomials.
2. Let p_{1}, p_{2}, p_{3} and p_{4} be points in \mathbb{P}^{1}, with coordinates z_{1}, z_{2}, z_{3} and z_{4}. If the cardinality of the set

$$
P=\left\{p_{1}, p_{2}, p_{3}, p_{4}\right\},
$$

is at least three then the cross-ratio of p_{1}, p_{2}, p_{3} and p_{4} is

$$
\lambda=\lambda\left(p_{1}, p_{2}, p_{3}, p_{4}\right)=\frac{\left(z_{1}-z_{2}\right)\left(z_{3}-z_{4}\right)}{\left(z_{1}-z_{3}\right)\left(z_{2}-z_{4}\right)} \in \mathbb{P}^{1} .
$$

(i) Show that the cross-ratio λ is invariant under the action of PGL(2) on the four ordered points.
(ii) Show that the only invariant of the four ordered points is given by the cross-ratio λ (in other words, show that any two ordered set of four points are projectively equivalent if and only if they have the same cross-ratio).
3. Show that there infinitely many of the curves $C_{\alpha, \beta}$ are not projectively equivalent.
4. Find the projection of the twisted cubic from $[1: 0: 0: 1]$ and $[0: 1: 0: 0]$. Show that, up to projective equivalence, these are the only two cases.
5. Show that $C_{\alpha, \beta}$ is the projection of a rational quartic curve in \mathbb{P}^{4}. Thereby show that projecting the same variety from different points we can get infinitely many projectively inequivalent varieties.
Challenge Problem:
6. Show that every square matrix over a field satisfies its characteristic polynomial. (Hint: reduce to the case of an algebraically closed field.

Show that the space of all matrices is naturally a variety and identify a large subset where the result is obvious).

