HWK \#4, DUE WEDNESDAY 02/05

Let p_{1}, p_{2}, p_{3} and p_{4} be four points in \mathbb{P}^{1}.

1. Let $G \subset \mathrm{PGL}(2)$ be the subgroup fixing the set of four points. Show that G is naturally a subset of S_{4}, which always contains the Viergrüppe (that is, the subgroup of S_{4} generated by the permutations of type $(2,2))$.
2. Show that the only invariant of the four unordered points is given by the j-invariant,

$$
j=2^{8} \frac{\left(\lambda^{2}-\lambda+1\right)^{3}}{\lambda^{2}(\lambda-1)^{2}}
$$

(somewhat surprisingly the factor of 2^{8} is put there by number theorists to make things come out in characteristic 2). Identify the possible values of the j-invariant, for four distinct points.
3. Identify all possible quotient groups G / V and the corresponding j-invariants.
4. Show that the set of n unordered points in \mathbb{P}^{1} is naturally identified with \mathbb{P}^{n} (Hint, associate to n unordered points, the polynomial which defines them).
5. Show that the j-invariant extends to a rational map

$$
j: \mathbb{P}^{4} \rightarrow \mathbb{P}^{1}
$$

which is defined at any point where the set $\left\{p_{1}, p_{2}, p_{3}, p_{4}\right\}$ has cardinality at least three.
6. Let $p \in \mathbb{P}^{3}$ and let $H \subset \mathbb{P}^{3}$ be a plane. Show that the locus

$$
\Sigma_{p, H}=\{[l] \in \mathbb{G}(1,3) \mid p \in l \subset H\} \subset \mathbb{G}(1,3) \subset \mathbb{P}^{5},
$$

is a line in \mathbb{P}^{5}. Show conversely that any line lying on $\mathbb{G}(1,3)$ under the Plücker embedding is of this form.
7. Let $p \in \mathbb{P}^{3}$ and let $H \subset \mathbb{P}^{3}$ be a plane. Show that the loci

$$
\Sigma_{p}=\{[l] \in \mathbb{G}(1,3) \mid p \in l\} \subset \mathbb{G}(1,3) \subset \mathbb{P}^{5}
$$

and

$$
\Sigma_{H}=\{[l] \in \mathbb{G}(1,3) \mid l \subset H\} \subset \mathbb{G}(1,3) \subset \mathbb{P}^{5}
$$

are planes in \mathbb{P}^{5}. Show conversely that any plane lying on $\mathbb{G}(1,3)$ under the Plücker embedding is of this form.

