HWK \#5, DUE WEDNESDAY 02/12

1. Let l_{1} and $l_{2} \subset \mathbb{P}^{3}$ be two skew lines. Let

$$
Q=\left\{[l] \in \mathbb{G}(1,3) \mid l \cap l_{1}, l \cap l_{2} \neq \varnothing\right\} \subset \mathbb{G}(1,3) \subset \mathbb{P}^{5}
$$

Show that Q is a quadric surface, isomorphic to $\mathbb{P}^{1} \times \mathbb{P}^{1}$ contained in some linear subspace $\mathbb{P}^{3} \subset \mathbb{P}^{5}$. What happens if l_{1} and l_{2} are not skew? 2. Now let $Q \subset \mathbb{P}^{3}$ be a quadric surface of rank four. Show that the two families of lines on Q correspond to two families of conics on $\mathbb{G}(1,3)$ lying on two complementary planes Λ_{1} and $\Lambda_{2} \subset \mathbb{P}^{5}$. Show that conversely the lines in \mathbb{P}^{3} corresponding to a conic lying in $\mathbb{G}(1,3)$ sweep out a quadric surface provided that the plane spanned by the conic does not lie in $\mathbb{G}(1,3)$. What happens to this correspondence if either the quadric has rank three or the plane lies in $\mathbb{G}(1,3)$?
3. (a) Let $C \subset \mathbb{P}^{2} \subset \mathbb{P}^{3}$ be the conic given by $Z_{1}^{2}-Z_{0} Z_{2}=Z_{3}=0$. Find equations for the locus of lines

$$
\mathcal{C}_{1}(C)=\{[l] \in \mathbb{G}(1,3) \mid l \cap C \neq \varnothing\} \subset \mathbb{G}(1,3)
$$

which meet C.
(b) Same question for the twisted cubic given as the image of $[S$: $T] \longrightarrow\left[S^{3}: S^{2} T: S T^{2}: T^{3}\right]$.

