
6. Grasmannians

We first treat Grassmanians classically. Fix an algebraically closed
field K. We want to parametrise the space of k-planes W in a vector
space V . The obvious way to parametrise k-planes is to pick a basis
v1, v2, . . . , vk for W . Unfortunately this does not specify W uniquely,
as the same vector space has many different bases. However, the line
spanned by the vector

ω = v1 ∧ v2 ∧ · · · ∧ vk ∈
k∧
V,

is invariant under re-choosing a basis.

Definition 6.1. The Grassmannian G(k, V ) of k-planes in V is

the set of rank one vectors in P(
∧k V ).

We set G(k, n) = G(k,Kn) and G(k, n) = G(k+1, n+1). The latter
may be thought of as the set of k-planes in Pn.

The embedding of the Grassmannian inside P(
∧k V ) is known as the

Plücker embedding. If we choose a basis e1, e2, . . . , en for V , then a
general element of

∧k V is given by∑
I

pIeI ,

where I ranges over all collections of increasing sequences of integers
between 1 and n,

i1 < i2 < · · · < ik,

and eI is shorthand for the wedge of the corresponding vectors,

ei1 ∧ ei2 ∧ · · · ∧ eik .

The coefficients pI are naturally coordinates on P(
∧k V ), which are

known as the Plücker coordinates.
There is another way to look at the construction of the Grassmannian

which is very instructive. If we pick a basis e1, e2, . . . , en for V , then
let A be the k × n matrix whose rows are v1, v2, . . . , vk, in this basis.
As before, this matrix does not uniquely specify W ⊂ V , since we
could pick a new basis for W . However the operation of picking a
new basis corresponds to taking linear combinations of the rows of our
matrix, which in turn is the same as multiplying our matrix by a k× k
invertible matrix on the left. In other words the Grassmannian is the
set of equivalence classes of k×n matrices under the action of GLk(K)
by multiplication on the left.

It is not hard to connect the two constructions. Given the matrix
A, then form all possible k× k determinants. Any such determinant is
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determined by specifying the columns to pick, which we indicate by a
multindex I. In terms of

∧k V , this is the same as picking a basis and
expanding our vector as a sum∑

I

pIeI ,

where, as before, eI is the wedge of the corresponding vectors. For
example consider the case k = 2, n = 4 (lines in P3). We have a matrix

A =

(
a11 a12 a13 a14
a21 a22 a23 a24

)
.

The corresponding plane is given as the span of the rows. We can form
six two by two determinants. Clearly these are invariant, up to scalars,
under the action of GL2(K).

The Grassmannian has a natural cover by open affine subsets, iso-
morphic to affine space, in much the same way that projective space
has a cover by open affines, isomorphic to affine space. Pick a linear
space U of dimension n − k, and consider the set of linear spaces W
of dimension k which are complementary to U , that is, which meet U
only at the origin. Identify V with the sum V/U + U . Then a linear
space W complementary to U can be identified with the graph of a
linear map

V/U −→ U.

It follows that the subset of all linear spaces W complementary to U
is equal to

Hom(V/U, U) ' Kk(n−k) ' Ak(n−k)
K .

Another way to see this is as follows. Consider the first k× k minor.
Suppose that the corresponding determinant is non-zero, that is, the
corresponding vectors are independent. In this case the k × k minor
is equivalent to the identity matrix, and the only element of GLk(K)
which fixes the identity, is the identity itself. Thus we have a canonical
representative of the matrix A for the linear space W . We are free to
choose the other k × (n − k) block of the matrix, which gives us an
affine space of dimension k(n− k). The condition that the first k × k
minor has non-zero determinant is an open condition, and this gives us
an open affine cover by affine spaces of dimension k(n− k). Note that
the condition that the first k×k minor is invertible is equivalent to the
condition that we do not meet the space given by the vanishing of the
first k coordinates, which is indeed a linear space of dimension n− k.

It is interesting to write down the equations cutting out the image of
the Grassmannian under the Plücker embedding, although this turns

2



out to involve some non-trivial multilinear algebra. The problem is to
characterise the set of rank one vectors ω in

∧k V .

Definition 6.2. Let ω ∈
∧k V . We say that ω is divisible by v ∈ V

if there is an element φ ∈
∧k V such that ω = φ ∧ v.

Lemma 6.3. Let ω ∈
∧k V .

Then ω is divisible by v if and only if ω ∧ v = 0.

Proof. This is easy. If ω = φ ∧ v, then

ω ∧ v = φ ∧ v ∧ v
= 0.

To see the other direction, extend v to a basis v = e1, e2, . . . , en of
V . Then we may expand ω in this basis.

ω =
∑

pIeI .

On the other hand

v ∧ eI =

{
eJ if 1 /∈ I, where J = {1} ∪ I
0 if 1 ∈ I.

Thus ω ∧ v = 0 if and only if pI 6= 0 implies 1 ∈ I if and only if v
divides ω. �

Lemma 6.4. Let ω ∈
∧k V .

Then ω has rank one if and only if the linear map

φ(ω) : V −→
k+1∧

V v −→ ω ∧ v,

has rank at most n− k.

Proof. Indeed φ(ω) has rank at most n − k if and only if the linear
subspace of vectors dividing ω has dimension at least k if and only if
ω has rank one. �

Now the map

φ :
k∧
V −→ Hom(V,

k+1∧
V ),

is clearly linear. Thus the map φ can be interpreted as a matrix whose
entries are linear coordinates of

∧k V and the locus we want is given
by the vanishing of the (n− k + 1)× (n− k + 1) minors.

It follows that the Grassmannian is a closed subset of P(
∧k V ). Un-

fortunately the equations we get in this way won’t be best possible.
In particular they won’t generate the ideal of the Grassmannian (they
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only cut out the Grassmannian set theoretically). To find equations
that generate the ideal, we have to work quite a bit harder.

Lemma 6.5. There is a natural pairing between
∧k V and

∧n−k V ∗.
This pairing is well-defined up to scalars and preserves the rank.

Proof. There is a natural pairing

k∧
V ×

n−k∧
V −→

n∧
V,

which sends
(ω, η) −→ ω ∧ η.

On the other hand,
∧n V is one dimensional so that it is non-canonically

isomorphic to K and (
∧n−k V )∗ is isomorphic to

∧n−k V ∗. �

Given ω, let ω∗ be the corresponding element of
∧n−k V ∗. Now there

is a natural map

ψ(ω∗) : V ∗ −→
n−k+1∧

V ∗

which sends
v∗ −→ ω∗ ∧ v∗.

Further ω has rank one if and only if ω∗ has rank one, which occurs if
and only if ψ(ω∗) has rank at most k.

Moreover the kernel of φ(ω), namely W , is precisely the annihilator
of the kernel of ψ(ω∗). Dualising, we get maps

φ∗(ω) :
k+1∧

V ∗ −→ V ∗ and ψ∗(ω) :
n−k+1∧

V −→ V,

whose images annihilate each other if and only if ω has rank one.
Thus ω has rank one if and only if for every α ∈

∧k+1 V ∗ and β ∈∧n−k+1 V ∗,
Ξα,β(ω) = 〈φ∗(ω)(α), ψ∗(ω)(β)〉 = 0.

Now Ξα,β are quadratic polynomials, which are known as the Plücker
relations. It turns out that they do indeed generate the ideal of the
Grassmannian.

It is interesting to see what happens when k = 2:

Lemma 6.6. Let ω ∈
∧2 V .

Then ω has rank one if and only if ω ∧ ω = 0.

Proof. One direction is clear, in fact for every k, if ω has rank one then
ω ∧ ω = 0.

To see the other direction, we need to prove that if ω has rank at
least two, then ω∧ω 6= 0. First observe that if ω has rank at least two,
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then we may find a projection down to a vector space of dimension
four, such that the image has rank two. Thus we may assume that V
has dimension four and ω has rank two. In this case, up to change of
coordinates,

ω = e1 ∧ e2 + e3 ∧ e4,
and by direct computation, ω ∧ ω is not zero. �

Now
ω =

∑
i,j

pi,jei ∧ ej.

Suppose that n = 4. If we expand

ω ∧ ω,
then everything is a multiple of e1∧e2∧e3∧e4. We need to pick a term
from each bracket, so that the union is {1, 2, 3, 4}. In other words, the
coefficient of the expansion is a sum over all partitions of {1, 2, 3, 4}
into two equal parts. By direct computation, we get

p12p34 − p13p24 + p14p23.

In particular, G(1, 3) is a quadric in P5 of maximal rank.
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