
MODEL ANSWERS TO HWK #2

2.14. (a) We first show that the intersection of the homogeneous prime
ideals is the set of nilpotent elements of S. Indeed, the intersection
of the homogeneous prime ideals certainly contains all the nilpotent
elements. Suppose s ∈ S is not nilpotent. It remains to find a homoge-
neous prime ideal which does not contain s. As the ideal generated by
the nilpotent elements is homogeneous we may assume that s is homo-
geneous. Pick a maximal homogeneous ideal p which does not contain
s. Then p is a homogeneous prime ideal which does not contain s.
Now ProjS is empty if and only if every homogeneous prime ideal
contains S+. So ProjS is empty if and only if every element of S+ is
nilpotent.
(b) Let a be the homogeneous ideal generated by φ(S+). Then U =
ProjT − V (a) and so U is open. If g ∈ S is homogeneous then
φ : S −→ T induces a ring homomorphism φ(g) : S(g) −→ T(φ(g)). This
defines a morphism SpecT(φ(g)) −→ SpecS(g) whence, by composi-
tion, a morphism SpecT(φ(g)) −→ ProjS. On the other hand, the
sets ProjT − V (φ(g)) form an open cover of U . As these morphisms
are clearly compatible on overlaps, this induces a morphism

f : U −→ X = ProjS.

(c) Suppose that p is a homogeneous prime ideal which contains φ(S+).
Then p contains Td, for all d ≥ d0. Suppose that g ∈ Td, d ≥ 1. Then
gk ∈ Tkd and for k large enough gk ∈ p. But then g ∈ p and p ⊃ T+.
So U = ProjT .
Suppose that g ∈ S is homogeneous of degree d ≥ d0. Consider the
ring homorphism:

φ(g) : S(g) −→ T(φ(g)).

Let h = φ(g). Suppose that b/hk ∈ T(h). Then b ∈ Tdk. Pick a ∈ Sdk
such that φ(a) = b. Then φ(g)(a/g

k) = b/hk and so φ(g) is surjective.
Suppose that a/gk maps to zero, for some k > 0. Then hlφ(a) = 0,
in T(k+l)d and it follows that gla = 0 in S(k+l)d. Thus φ(g) is a ring
isomorphism.
Now suppose that g is any homogeneous element of S. Then gk is also
homogeneous and if k is sufficiently large then gk has degree at least
d0, and V (g) = V (gk). Thus open sets of the form ProjS − V (g) and
ProjT − V (g) cover ProjS and ProjT , where g has degree at least d0.
It follows that f is an isomorphism.
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It remains to find an example of this phenomena. Let

S = k[X, Y ]/〈X2, XY, Y 2〉

and let T = k[X, Y ]/〈X, Y 〉. Then there is a natural ring homomor-
phism

φ : S −→ T.

This map is not an isomorphism but φd is a isomorphism of vector
spaces unless d = 1 (indeed it is the zero map between vector spaces
of dimension zero, as soon as d ≥ 2). In fact more generally take any
projective variety X ⊂ Pn, let J = I(X) be the homogeneous ideal of
X and let I be any ideal which cuts out X scheme theoretically. Let
R = k[X0, X1, . . . , Xn], S = R/J and T = R/I.
(d) Suppose that V ⊂ Pn. Then Vi = V ∩Ui forms an open affine cover
of V , where Ui is the standard affine open subset of Pn. Then t(Ui)
forms an open cover of V . We have already seen that t(Ui) = SpecAi,
where Ai is the coordinate ring of Vi. But Ai = S(Xi). It follows that
there is a natural isomorphism

f ′i : t(Ui) −→ Proj(S)− V (Xi),

and by composition we get a morphism,

fi : t(Ui) −→ Proj(S).

As these morphisms are compatible on overlaps, we get a morphism

f : t(V ) −→ Proj(S).

Clearly we may also define a morphism

g : Proj(S) −→ t(V ),

using the same argument. As f and g are inverse morphisms, f is an
isomorphism.
3.6 Let U = SpecA be any open affine subscheme. Then ξ ∈ U and so
ξ corresponds to a prime ideal of A, which must be the zero ideal, or
else ξ would not the generic point. But then

OX,ξ ' A〈0〉 = K,

where K is the field of fractions of A.
3.8 We first check that if X = SpecA is an integral affine scheme then
X is normal if and only if A is integrally closed. Let K be the field of
fractions of A.
Suppose first that X is normal. Let u ∈ K be integral over A. Let
p ∈ X be a point. Then u is integral over OX,p. As X is normal, OX,p
is integrally closed, so that u ∈ OX,p. As a function is regular if and
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only if it is regular at every point, we have u ∈ OX(X) = A. Thus A
is integrally closed.
Suppose that A is integrally closed. Let u ∈ K be integral over OX,p.
By assumption we may find αi ∈ OX,p such that u is a root of the
monic polynomial

tn + αn−1t
n−1 + · · ·+ α1t+ α0.

p corresponds to a prime ideal p of A, by definition, and

OX,p ' Ap.

Thus we may find ai ∈ A and fi /∈ p such that

αi =
ai
fi
.

Let f be the product of f0, f1, . . . , fn−1 and let v = uf . Multiplying
through by fn, we get

vn + fαn−1vf
n−1 + · · ·+ fn−1α1v + α0

= fnun + fnαn−1(u)n−1 + · · ·+ fnα1u+ α0

= 0.

As f iαn−i ∈ A, it follows that v is integral over A. As A is integrally
closed, v ∈ A. But f /∈ p and so u = v/f ∈ OX,p. Therefore OX,p is
integrally closed, so that X is normal.
Now we check the patching condition. Suppose that U and V are two
affine open subschemes of X. Let Ũ = Spec Ã and Ṽ = Spec B̃. We
have to exhibit a canonical isomorphism

φ : U ′ −→ V ′,

where U ′ is the inverse image of U ∩V in Ũ and V ′ is the inverse image
of U ∩ V in Ṽ .
Since it suffices to construct a canonical morphism on an open cover,
we may assume that U and V are open affines of a common affine
scheme W = SpecC and that A = Cf and B = Cg, where f and g

belong to C. It suffices to check that if Ã is the integral closure of A,
then Ãf is the integral closure of Af . It is clear that any element of

Ãf is integral over Af . Indeed if a/fk ∈ Ãf , where a ∈ Ã satisfies the
monic polynomial

xn + an−1x
n + · · ·+ a0,

then a/fk satisfies the monic polynomial

xn + bn−1x
n + · · ·+ b0,
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where bi = ai/f
n(k−i). On the other hand if u belong to the integral

closure of Af , then u is a root of a monic polynomial

xn + bn−1x
n + · · ·+ b0,

where each bi ∈ Af . Clearing denominators, it follows that a = f lu ∈
Ã, for an appropriate power of f . Thus one can glue the schemes Ũ
together to get a scheme X̃. The inclusion A −→ Ã induces a morphism
of schemes Ũ −→ U , whence a morphism of schemes Ũ −→ X. Arguing
as before, these morphisms agree on overlaps. It follows that there is
an induced morphism X̃ −→ X.
Now suppose that there is a dominant morphism of schemes Z −→ X,
where Z is normal. This induces a dominant morphism ZU −→ U ,
where U is an open affine subscheme and ZU is the inverse image of U
Thus it suffices to prove the universal property of X = SpecA in the
case when X is affine. Covering Z by open affines, it suffices to prove
this result when Z = SpecB is affine.
Note that as Z −→ X is dominant then the induced ring homomor-
phism A −→ B is injective. Let L be the function field of Z so that
L is the field of fractions of B. Then there is an induced field homo-
morphism K −→ L. If X̃ = Spec Ã, so that Ã is the integral closure
of A, then A ⊂ Ã ⊂ K and there is an induced ring homomorphism
Ã −→ L. As Z is normal, B is integrally closed. On the other hand,
any element of the image is obviously integral over the image of A,
and so integral over B. But then the image of Ã lies in B, as B is
integrally closed. This induces a natural morphism Z −→ X̃, which
factors X̃ −→ X.
Suppose that X is of finite type. Clearly we may assume that X =
SpecA is affine. We are reducing to showing that the integral closure
Ã of a finitely generated k-algebra A, is a finitely generated A-module.
But this is a well-known result in algebra.
3.9 (a)

A2
k = Spec k[x, y] = Spec(k[x]⊗

k
k[y]) = A1

k ×
k
A1
k.

The points of A1
k consist of the maximal ideals ma and the generic point

ξ. The points of the product of sets are then ordered pairs (ma,mb),
with closure {(ma,mb)}, (ma, ξ), with closure

{ (ma,mb) | b ∈ k } ∪ {(ma, ξ)},

(ξ,mb) with closure

{ (ma,mb) | a ∈ k } ∪ {(ξ,mb)},
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and (ξ, ξ), whose closure is the whole space. Let η = 〈xy− 1〉. Then η
is a prime ideal, whose closure is the set

{ (ma,mb) | ab = 1 } ∪ {η}.
Thus η is not a point of the product of the two sets.
(b) Let X = Spec k(s)×

k
k(t). As there is a morphism

Spec k(t) −→ Spec k[t] induced by k[t] −→ k(t),

there is a morphism
X −→ A2

k.

Let U be the image. k(s) ⊗
k
k(t) is the localisation of k[s, t] of the

multiplicative set S generated by the irreducible polynomials in s and
t. It follows that X is isomorphic to U . U is obtained by throwing out
every closed point, and every line parallel to either axis. Equivalently
the points of U the generic point A2

k and the generic point of every
irreducible curve except the x-axis or y-axis.
3.11 (a) We first check this in the special case whenX ′ −→ X is an open
immersion. In this case the image of Y ′ is clearly closed, the restricted
morphism is a homeomorphism and surjectivity of OX′ −→ f∗OY ′ is
clear. In particular, it is easy to deduce that f is a closed immersion
if and only if there is a cover by open immersions X ′ −→ X (meaning
simply that X is the union of the images) such that f ′ is a closed
immersion, for every open set of the cover.
So to check the general case, we may assume that X = SpecA is affine.
Let V ⊂ Y be an open affine subset of Y . We may find an open subset
U ⊂ X such that f−1(U) = V . Then we may find a regular function
f on X (or better f ∈ A) such that Uf ⊂ U . Then f−1(Uf ) is an
open affine subset of V . Since Uf cover U , we may assume that X and
Y = SpecB are both affine. In this case B is a quotient of A. Finally
we may assume that X ′ = SpecA′ is affine. Since B′ = B ⊗

A
A′ is a

quotient of A′, f ′ is indeed a closed immersion.
(b) Pick an open affine cover {Yα} of Y . Then there is an open subset
Xα of X such that Yα = Y ∩Xα. We may find fi such that for every α
there is an index i such that Ufi ⊂ Xα. Then Ufi ∩ Y is an open affine
subset of Y , as it is equal to the locus where the regular function f |Yα
is not zero on the affine scheme Yα. By compactness we may assume
there are only finitely many f1, f2, . . . , fr. f1, f2, . . . , fr generate the
unit ideal as the sets Ufi are an open affine cover of X. By (2.17.b) Y
is affine. Now apply (2.18.d).
(c) We want to give a morphism of schemes Y −→ Y ′. The map on
topological spaces is simply the identity. Pick an open affine cover of
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X. By part (b) this induces an open affine cover of Y and Y ′. On this
affine cover if Y and Y ′ are given by ideals a and a′ in the ring A, then
a is the radical of a′. In particular there is a natural inclusion a ⊂ a′

and so a natural surjection A/a′ −→ A/a which factors A −→ A/a′

and A −→ A/a. This gives us a commutative diagram

Y - Y ′

X.
?

-

These maps automatically glue, by naturality.
(d) We first suppose that X = SpecA is affine. In this case there is a
homomorphism of rings,

A −→ H0(Z,OZ).

Let p be the kernel and let B be the quotient, so that there is a ring
commutative diagram,

A - B

H0(Z,OZ).
?-

Let Y = SpecB. Then, Y is a closed subscheme of X and there is a
commutative diagram

X � Y

Z.

6
�

Now suppose that there is another commutative diagram,

X � Y ′

Z.

6
�

Then there is an induced map of rings,

A - H0(Y ′,OY ′).

H0(Z,OZ).
?-

By the universal property of the quotient, there is an induced ring
homomorphism,

H0(Y ′,OY ′) −→ B,
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and this gives rise to a morphism of schemes Y −→ Y ′.
Now suppose that X is arbitrary. Pick an open affine cover {Ui} of X,
such that Uij is affine. Let Vi be the inverse image of Ui in Xi. Let
gi : Yi −→ X be the affine scheme constructed above. Let Yij = g−1i (Uj)
be the inverse image of Uj. Then Yij and Yji satisfy the same universal
property and so there are induced isomorphisms φij which satisfy the
cocycle condition. Glueing together the Yi, this defines Y . Y is a closed
subscheme of X and it clearly satisfies the given universal property.
The last property is clear, since both Y and the reduced induced sub-
scheme enjoy the same universal property.
3.12. (a) φ(S+) = φ(T+), as φ is surjective, and so U = ProjT . Now
suppose that g ∈ T is homogeneous. If h = φ(g) ∈ S then

φ(g) : S(h) −→ T(g),

is surjective. Therefore

f(g) : ProjT − V (h) = SpecT(h) −→ ProjS − V (g) = SpecS(g),

is a closed immersion. As open sets of the form ProjS − V (g) cover
ProjS it follows that f is a closed immersion.
(b) We have surjective ring homomorphisms S −→ S/I ′, S −→ S/I
and S/I ′ −→ S/I. This gives rise to closed immersions i : ProjS/I ′ −→
ProjS, j : ProjS/I −→ ProjS and k : ProjS/I −→ ProjS/I ′, such
that j = i ◦ k. k is an isomorphism by (2.14.c) and so i and j are
equivalent closed immersions. By (2.14.d) there are plenty of examples
of this phenomena.
3.13 (a) Let f : X −→ Y be a closed immersion. Suppose that i : U −→
Y is an open immersion, where U is affine. By (3.11.a) the map
g : V −→ U obtained by pulling back the morphism f along the mor-
phism i is a closed immersion. As U is affine, (3.11.b) implies that V
is affine as well, and the map i is induced by a quotient ring homomor-
phism,

A −→ B = A/a.

B is clearly a finitely generated A-algebra and so f is of finite type.
(b) Let f : X −→ Y be an open immersion. Let U ⊂ X be an affine
open subset of X. Then f(U) is an open affine subset of Y which is
isomorphic to U . It follows that f is locally of finite type and as f is
quasi-compact, it is of finite type.
(c) Let f : X −→ Y and g : Y −→ Z be two morphisms of finite type
and let h : X −→ Z be the composition. Pick an open affine subset
W = SpecC of Z. By (3.3.b) we may find a finite open affine cover
Vi = SpecBi of g−1(W ) such that Bi is a finitely generated C-algebra.
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For each Vi, we may find a finite open affine cover Uij = SpecAij of
f−1(Vi), such that Cij is a finitely generated Bi-algebra.
But then Uij = SpecAij is a finite open affine cover of h−1(W ) where
Aij is a finitely generated C-algebra. Therefore h is of finite type.
(d) Let f : X −→ Y be a morphism of finite type and let Y ′ −→ Y be
a morphism. Let f ′ : X ′ −→ Y ′ be the induced morphism, where X ′ is
the fibre product of X and Y ′ over Y . We want to prove that f ′ is of
finite type. Let V = SpecB be an open subset of Y . Then there is a
finite open affine cover Ui = SpecAi of f−1(V ), where Ai is a finitely
generated B-algebra.
(e) By part (d) X ×

S
Y −→ Y is of finite type. But then the morphism

X ×
S
Y −→ S is of finite type, as it is a composition of morphisms of

finite type.
(f) Let W = SpecC be an affine open subset of Z. By assumption
(g ◦ f)−1(W ) can be covered by affine open subsets U = SpecA of X,
where A is a finitely generated C-algebra. Pick an affine open subset
V = SpecB of g−1(W ). Then we can cover f−1(V )∩U with affine open
subsets of the form SpecAh, where h is a regular function on U . As
Ah is a finitely generated C-algebra it is a finitely generated B-algebra.
But then f is locally of finite type and as f is compact, it is of finite
type.
(g) Let V = SpecB be an affine subset of Y . Then f−1(V ) is a finite
union of affine sets of the form U = SpecA, where A is a finitely
generated B-algebra. As B is Noetherian, A is Noetherian and so X
is Noetherian.
3.15 We first make some general observations that apply to both parts
(a) and (b).
Suppose that X is of finite type over a field k. Then X has a finite
cover Ui = SpecAi by open affines, where Ai is a finitely generated
k-algebra. If Ui and Uj don’t intersect then Ui ∪ Uj = SpecAi ⊕ Aj is
affine. So we may assume that Ui ∩ Uj is non-empty. But then X is
irreducible or reduced if and only if Ui is irreducible or reduced, for all
i.
If K/k is any field extension, then Y = X ×

Spec k
SpecK is covered by

open affines of the form Vi = SpecBi = SpecAi ⊗
k
K. As Ui ∩ Uj is

non-empty, so is Vi ∩ Vj. Thus Y is irreducible or reduced if and only
if Vi is irreducible or reduced for all i.
So we might as well assume that X = SpecA is affine. If X is ir-
reducible and Y is reducible, then Xred is irreducible and Y red is
reducible. Similarly if X is reduced and Y is not reduced then every
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irreducible component of X is reduced and some irreducible component
of Y is not reduced. Hence, we may also assume that X is integral and
Y is not integral. Note that the field extension K/k is the limit of the
finitely generated intermediary field extensions K/L/k. It follows that
the tensor product B is the limit of the tensor products BL = A ⊗

k
L.

Thus the scheme Y is the limit of the schemes XL = SpecBL. Since
the limit of integral schemes is integral, we may assume that K = L.
By induction we may assume that K = k(α) is primitive.
Suppose that α = x is transcendental over k. In this case B is a
localisation of A[x]. A[x] is clearly integral and so B is integral.
(a) It suffices to consider the case αp ∈ k. In this case B = A[α].
Suppose that f and g ∈ B and fg = 0. Now

f = f0 + f1α + · · ·+ fp−1α
p−1

for f0, f1, . . . , fp−1 ∈ A. Hence fp ∈ A. Similarly gp ∈ A. As fpgp = 0
and A is integral either fp = 0 or gp = 0. It follows that Y is irreducible.
(b) It suffices to prove that if α is separable over k then Y is reduced.
Replacing K by its Galois closure, we may assume that K/k is Galois,
with Galois group G. Thus G acts on B and BG = A. Suppose that
f 2 = 0. Consider

φ(x) =
∏
g∈G

(x− g∗f) ∈ B[x].

As this polynomial is invariant under G, in fact

φ(x) = a0 + a1x+ · · ·+ akx
k ∈ A.

As f 2 = 0 we have
0 = φ(f) = a0 + a1f.

Thus f ∈ A and so f = 0, since A is integral. Thus B does not have
any nilpotents and Y is reduced.
(c) Consider Spec k(t)[x]/〈x6 − t〉, where k = F2. As x6 − t ∈ k(t)[x]
is irreducible, this scheme is integral. But if we replace t by t6 (equiv-
alently, we adjoin a root of x6 − t) then x3 − t3 is a non-zero global
section which squares to zero and x3 − t3 factors non-trivially, so that
Spec k(t)[x]/〈x6 − t6〉 is neither reduced nor irreducible.
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