
MODEL ANSWERS TO HWK #3

1 (i) The images are closed subsets, as P1 is a projective variety and ν
is a morphism.
(ii)

(S4 − βS3T )(αST 3 − T 4) = −(αβ + 1)S4T 4 + aS5T 3 + bS3T 5

and

(S3T − βS2T 2)(αS2T 2 − ST 3) = −(αβ + 1)S4T 4 + aS5T 3 + bS3T 5.

Thus the image lies in the quadric V (XW − Y Z).
(iii) To determine the type of the image C, it suffices to determine how
C meets both lines of the ruling. If it has type (a, b) then it will meet
the lines of one ruling in a points and it will meet the lines of the other
ruling in b points.
Now the lines of one ruling are given as µX = λY , µZ = λW . This
gives two set of equations for S and T . In the first set, we can factor
out S2(S − βT ) and in the second set we can factor out T 2(αS − T ),
and we get the solution µS = λT .
The lines of the other ruling are given as µX = λZ and µY = λW .
This gives two sets of equations for S and T . In the first set we can
factor out S and in the second T . In both cases the equations reduce
to

µS2(S − βT ) = λT 2(αS − T ).

Thus our curve has type (1, 3).
(iv) Let’s first figure out the equation of C in bihomogeneous coordi-
nates on P1×P1. The general bihomogeneous polynomial of type (3, 1)
looks like Q0X0 +Q1X1 where Q0 and Q1 have degree three in Y0 and
Y1. Matching with the lines we found in part (iii), the equation is

Y 2
1 (αY0 − Y1)X0 − Y 2

0 (Y0 − βY1)X1.

To find equations of cubics containing C, we top up this equation by
multiplying through by X2

0 and X2
1 . Note that

[X : Y : Z : W ] = [X0Y0 : X1Y0 : X0Y1 : X1Y1].

Topping up with X2
0

Y 2
1 X

2
0 (αX0Y0−X0Y1)−X2

0Y
2
0 (X1Y0−βX1Y1) = Z2(αX−Z)−X2(Y−βW ).

and topping up with X2
1

X2
1Y

2
1 (αX0Y0−X0Y1)−X2

1Y
2
0 (X1Y0−βX1Y1) = W 2(αX−Z)−Y 2(Z−βW ).
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2. (i) Note that PGL(2) is generated by translations z −→ z + a and
z −→ 1/z. Translation leaves each difference unchanged and so the
cross-ratio is clearly unchanged. On the other hand

(z−1
1 − z−1

4 )(z−1
2 − z−1

3 )

(z−1
1 − z−1

3 )(z−1
2 − z−1

4 )
=

(z4 − z1)(z3 − z2)
(z3 − z1)(z4 − z2)

= λ.

so that the cross-ratio is also invariant under z −→ 1/z. Thus the
cross-ratio is invariant under PGL(2).
(ii) Recall that there is a unique element φ of PGL(2) carrying the
first set of three points to 0, ∞ and 1. Thus the only invariant of four
ordered points is the position of the fourth point µ. But the cross-ratio
is invariant under the action of PGL(2), and for 0,∞, 1 and µ it comes
out to be

λ =
(0− µ)(1/0− 1)

(0− 1)(1/0− µ)
= µ.

3. We know that our curves lie in a unique copy of P1 × P1 and that
they have type (1, 3). One family of lines will meet the curve in one
point and all but finitely many of the other lines will meet the curve
in three points.
I claim that four lines of the other family will meet the curve in two
points. In fact this is given by the zeroes of the discriminant of the
polynomial of type (3, 1) with respect to the variables which give the
cubic, and the discriminant of a cubic is a quartic polynomial (a more
sophisticated way to see there are four such lines proceeds as follows;
projection onto the correpsponding factor defines a three to one cover
of P1 and by Riemann-Hurwitz this cover has four branch points [as-
suming that the ramification points are simple]).
Now four points in P1 have a one dimension moduli, called the j-
invariant (the j-invariant is an invariant of four unordered points; it
can be calculated by ordering the points, and taking the cross-ratio).
It suffices then to check that the cross-ratio is different, for different
values of α and β. Clearly there is a morphism

j : P1 −→ P1

which assigns to a point [α : β] the j-invariant of the four branch points.
In fact it suffices, then, to show that this morphism is not constant.
Now the four branch points, are given by the four values of λ and µ
such that

µS2(S − βT ) = λT 2(αS − T ).

has a repeated root. Two such values are λ = 0 (when the double root
is S2 = 0) and µ = 0 (when the double root is T 2 = 0). Now if β = 0,
then λ = 0 represents a point where there is a triple root. But there
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are values of α and β for which we get four distinct roots. Therefore j
is not constant, and so it must be surjective.
4. The trick here is instead of computing the equations of the twisted
cubic, projecting, and then computing resultants, instead compute the
composite morphism and write down the obvious equation satisfied by
the image. Projection from [1 : 0 : 0 : 1] is given by the morphism
[X : Y : Z : W ] −→ [X − W : Y : Z] (indeed the crucial point is
that [1 : 0 : 0 : 1] is the unique point of indeterminancy). Thus the
composite morphism is

P1 −→ P2

given by

[S : T ] −→ [S3 − T 3 : S2T : ST 2]

Thus on an affine open set, we have

t −→ (1− t3/t, t) = (x, z).

Thus xz = 1−x3 is the equation of the image. On P2 we have XY Z =
Y 3 −X3.
Similarly, projection from [0 : 1 : 0 : 0] is given by [X : Y : Z : W ] −→
[X : Z : W ], so that the morphism on P1 is given as

[S : T ] −→ [S3 : ST 2 : T 3]

Thus on an affine piece we have

t −→ (t2, t3)

which we know is the equation of the cuspidal cubic, Y 2Z = X3.
On the other hand, we know that if P1 = P(V ), then P3 = P(Sym3(V )).
Now, under the action of PGL(2), P3 splits into three orbits. In fact,
thinking of an element of Sym3(V ) as being a polynomial of degree
three, the orbits are classified by the positions of the roots. If there
are three roots, then under the action of PGL(2), we can think of these
roots as 0, 1 and ∞. In this case the corresponding polynomial is
XY (X + Y ). If there are two roots, one of them necessarily double,
we can assume the double root is at 0 and the other at ∞. In this
case we get the polynomial X2Y . Finally if there is one root, we can
assume it is at ∞, and the corresponding polynomial is X3. The last
case corresponds to points of the twisted cubic itself. Thus there are
two orbits not on the twisted cubic.
5. This follows from general principles; the morphism ν is given by
quartic polynomials in S and T . On the other hand it is not hard to
see that if one composes the morphism

[S : T ] −→ [S4 : S3T : S2T 2 : ST 3 : T 4],
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with projection from the point [β2 : −β : 1 : −α : α2] then one gets the
morphism ν.
6. Note first that the space of all m × n matrices over the field K, is
naturally represented by the affine space X = Amn. Setting m = n, a
moments thought will convince the reader that if we expand

det(A− tI)

then we we get a polynomial f(x) ∈ A(X)[t], where the ring A(X) is
the polynomial ring with variables aij. Substituting A into f(x) we get
a polynomial

f(A) ∈ A(X).

Note that if we pick an a matrix A whose entries lie in K, then get a
polynomial g(t) ∈ K[t].
We want to prove that the polynomial f(A) is identically zero. We
may asssume that K is algebraically closed. As X is irreducible, it
suffices to prove that there is a non-empty open subset U ⊂ X where
this polynomial is the zero function. Now if A is a diagonal matrix,
then

g(t) = (t− λ1)(t− λ2) . . . (t− λn),

where λ1, λ2, . . . , λn are the entries on the diagonal. In this case

g(A) = (A− λ1I)(A− λ2I) . . . (A− λnI).

Now to show that this matrix is the zero matrix, it suffices to show
that it gives the zero linear transformation. Almost by definition, if
e1, e2, . . . , en is the standard basis, then (A−λi)ei = 0, so that the RHS
is zero when applied to the standard basis. Thus g(A) is indeed the zero
matrix. More generally, this result remains true for any diagonalisable
matrix. On the other hand, the matrix A is certainly diagonalisable if
the polynomial g(t) has no repeated roots. Indeed in this case, A has
n distinct eigenvalues and by a well-known argument, it follows that
there is a basis of eigenvectors. So it suffices to prove that the set U
consisting of those matrices A such that g(t) has no repeated roots is
a non-empty open subset.
The fact that U is non-empty is trivial. Indeed, any diagonal matrix
with distinct entries on the diagonal lies in U . To finish off then, it
suffices to show that if we have a polynomial h(t) = h0+h1t+· · ·+hnt ∈
K[t] of degree n, then the set of points (h0, h1, . . . , hn) where h has a
repeated root is a Zariski closed subset of An+1.
First note that this is equal to the set of points where h and its deriv-
ative k have a common zero. Now use the theory of resultants, which
yields a (complicated) polynomial involving the coefficients of h and k,
to determine the common zeroes.
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