
MODEL ANSWERS TO HWK #4

1. We may as well assume that the first three points are 0, ∞, 1, and
in this case the fourth point is the cross-ratio λ. Moreover it suffices,
by symmetry, to produce an element of PGL(2) that switches 0 and∞
and 1 and λ. Now elements of PGL(2) that switch 0 and ∞ are of the
form z −→ a

z
. Under this map, 1 is sent to a. So we set a = λ. Clearly

λ is sent to one, as required.
2. We have already seen that any function of the four points p1, p2,
p3 and p4 which is invariant under the action of PGL(2), is in fact a
rational function of λ. In other words, we want to determine the fixed
field of L = K(λ) under the induced action of S4.
Now the quotient S4/V is isomorphic to S3. Thus the orbit of any set
of four points, up to isomorphism and relabelling, is in fact an orbit
of S3. So in fact we only need the fixed field under S3. Now any
two transpositions generate S3. The transposition (1, 2) is induced by
z −→ 1/z (this switches 0 and ∞ and fixes 1). Under this map, λ is
sent to 1/λ. Similarly the map z −→ 1 − z induces the transposition
(1, 3), since it switches 0 and 1, but fixes∞. This map sends λ to 1−λ.
By standard Galois theory, if M is the fixed field, so that L/M/K,
then the extension L/M has degree six. Let N = K(j). Note first that
j is invariant under the two maps

λ −→ 1/λ, and λ −→ 1− λ.
This says that L/N/M , that is, N is intermediary between L and
M . On the other hand, it is a standard result in a first course on
Galois theory, that if L = K(x), where x is transcendental, and N =
K(f(x)/g(x)) then the degree of the extension L/N is precisely the
maximum degree of f and g. In our case both f and g have degree six,
so that L/N has degree six. It follows that N = M , as required.
The j-invariant extends to a morphism P1 −→ P1. This morphism
is surjective and also sends 0, 1 and ∞ to ∞. It follows that the
j-invariant takes values in A1.
3. Typically G = V so that the quotient is trivial. There are two
other possibilities. It is possible that there is an extra involution. For
example, z −→ 1/z fixes both 1 and −1, so that the four points 0, 1,
∞ and −1 have an extra involution. In this case the j-invariant is

28 (1 + 1 + 1)3

1(−1− 1)2
= 1728.
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The other possibility is that there is an extra 3-cycle. For example, 1,
ω, ω2 and ∞ are fixed under z −→ ωz. Subtracting 1, we get 0, ω− 1,
ω2 − 1 and ∞. Dividing through by ω − 1 we get 0, 1, 1 + ω and ∞.
The j-invariant is

28 ((ω + 1)2 − (1 + ω) + 1)3

(1 + ω)(ω))2
= 28 (ω2 + ω + 1)3

(1 + ω)(ω))2
= 0.

Now there are no configuration of points with anymore symmetries,
since then G = S4 and the j-invariant would have to be both 1728 and
0, impossible.
4. Let p1, p2, . . . , pn be n points in P1. We denote an unordered set of
points by the formal sum

D = p1 + p2 + · · ·+ pn.

Associate to D the polynoial of degree n

F (X, Y ),

whose zeroes are given by D (clearly the zeroes of a polynomial are
unordered). Note that D is determined by the equivalence class of F
up to scalars, that is, a point of

P(Symn(V ∗))

Since the latter space is isomorphic to Pn, the result follows.
5. Note that we have a commutative diagram

P1 × P1 × P1 × P1 λ- P1

P4

j

6

-

Here the diagonal map is simply the natural map which associates to
an ordered pair (p1, p2, . . . , pn) an unordered pair D = p1+p2+· · ·+pn.
In other words, to show that the rational map j extends across the big
diagonal (where two points come together) it suffices to prove that the
cross-ratio extends across a component of the big diagonal, and that
the value we get is independent of re-ordering.
Thus we may assume that p1, p2, p3 are distinct and p4 is approaching
p3. Note that as a map to P1, the cross-ratio is given as

(p1, p2, p3, p4) −→ [(p1 − p4)(p2 − p3) : (p1 − p3)(p2 − p4)]

It follows that the morphism is well defined, since neither factor is zero
when p3 = p4. In fact it is clear that under these circumstances the
cross-ratio approaches [1 : 1]. The only other possibilities are that the
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cross-ratio approaches either [0 : 1] or [1 : 0]. If λ = 0, 1, or ∞, then
j =∞.
So as two points approach each other, the j-invariant approaches ∞.
6. Suppose that the point p = [v] and that the plane H corresponds
to W ⊂ V . Then a line l containing p, contained in H is spanned
by the vector v and a vector w ∈ W , so that as a point of P(

∧2 V ),
[l] = [ω] = [v ∧ w]. Now if W has basis v, w1, w2, then we can choose
w = aw1 + bw2, so that vector ω lies in the plane v ∧ w1 and v ∧ w2;
indeed ω = av ∧ w1 + bv ∧ w2. But this corresponds to a line L in P5,
lying on the Grassmannian.
Now suppose that we have a line L in P5, lying on the Grassmannian.
Any such line consists of a family ω = aω1+bω2 of decomposable forms,
so that ωi = ui ∧ vi. Now if the span of the vectors u1, u2, v1 and v2
is the whole of V , then ω1 + ω2 is indecomposable. Otherwise v2 is a
linear combination of u1, u2 and v1, so that L parametrises lines in W ,
the span of u1, u2, and v1. But then ω1 and ω2 must be divisible by the
same vector v (for example, by duality). Thus p = [v] and H = P(W ).
7. Suppose p = [v]. If the line l contains p, then it may be represented
by ω = v∧w. Suppose that we extend v to a basis v, w1, w2, w3. Then
we may assume that w = a1w1 + a2w2 + a3w3, so that l is represented
by a1ω1 + a2ω2 + a3ω3, where ωi = v ∧ wi. Σp is the corresponding
plane.
Now suppose that H = P(W ). Pick a basis w1, w2, w3 for W . Then a
line l in H is represented by a form ω = a1w2∧w3+a2w3∧w1+a3w1∧w2.
Since any rank two from in a three dimensional space is automatically
decomposable, the result follows easily. Alternatively, lines contained
in H are the same as lines containing [H] in the dual projective space.
Another way to proceed, in either case, is as follows. Consider the
surface P = ΣH . Pick any two points [l] and [m] ∈ P . Then l and m are
two lines in P3, which are contained in H. Then l and m must intersect
and we set p = l ∩m. Then we get a line L = Σp ∩ ΣH = Σp, H ⊂ P ,
by 6, which contains the original two points [l] and [m] ∈ L. It follows
that through every two points of the surface P , we may find a unique
line L. It follows easily that P is a plane. Similarly for Σp.
Now suppose that we are given a plane P inside G(1, 3) ⊂ P5. By 6, if
L ⊂ P is a line then there is a point p ∈ P3 and a plane H ⊂ P3 such
that L = Σp,H . Suppose that we can find three lines Li = Σpi,Hi

⊂
P , i = 1, 2 and 3, which form a triangle 4, such that {p1, p2, p3}
has cardinality three. Let lij ⊂ P3 be the line corresponding to the
intersection point Li ∩ Lj. Then lij = 〈pi, pj〉. In particular p1, p2
and p3 are not collinear so that they span a plane H = 〈p1, p2, p3〉. If
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H 6= Hi then lij = H ∩Hi, for j 6= i, a contradiction (lij must depend
on j). Thus H1 = H2 = H3 = H. Now let L = Σq,K ⊂ P be an
arbitrary line. Suppose that K 6= H. If m is the line corresponding to
a point where L meets the triangle 4 then m = H ∩K. Since L meets
the triangle 4 in at least two points, this is a contradiction. Thus
K = H and P = ΣH .
It remains to deal with the case that there is no such triangle. Note
that the map

f : P̌ −→ P3,

which assigns to the line L ⊂ P the point p ∈ P3, where L = Σp,H , is a
morphism. If this map is not constant then it is easy to find a triangle
such that {p1, p2, p3} has cardinality three. But if f is constant then
P = Σp.
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