MODEL ANSWERS TO HWK \#4

1. We may as well assume that the first three points are $0, \infty, 1$, and in this case the fourth point is the cross-ratio λ. Moreover it suffices, by symmetry, to produce an element of PGL(2) that switches 0 and ∞ and 1 and λ. Now elements of PGL(2) that switch 0 and ∞ are of the form $z \longrightarrow \frac{a}{z}$. Under this map, 1 is sent to a. So we set $a=\lambda$. Clearly λ is sent to one, as required.
2. We have already seen that any function of the four points p_{1}, p_{2}, p_{3} and p_{4} which is invariant under the action of PGL(2), is in fact a rational function of λ. In other words, we want to determine the fixed field of $L=K(\lambda)$ under the induced action of S_{4}.
Now the quotient S_{4} / V is isomorphic to S_{3}. Thus the orbit of any set of four points, up to isomorphism and relabelling, is in fact an orbit of S_{3}. So in fact we only need the fixed field under S_{3}. Now any two transpositions generate S_{3}. The transposition $(1,2)$ is induced by $z \longrightarrow 1 / z$ (this switches 0 and ∞ and fixes 1). Under this map, λ is sent to $1 / \lambda$. Similarly the map $z \longrightarrow 1-z$ induces the transposition $(1,3)$, since it switches 0 and 1 , but fixes ∞. This map sends λ to $1-\lambda$. By standard Galois theory, if M is the fixed field, so that $L / M / K$, then the extension L / M has degree six. Let $N=K(j)$. Note first that j is invariant under the two maps

$$
\lambda \longrightarrow 1 / \lambda, \quad \text { and } \quad \lambda \longrightarrow 1-\lambda .
$$

This says that $L / N / M$, that is, N is intermediary between L and M. On the other hand, it is a standard result in a first course on Galois theory, that if $L=K(x)$, where x is transcendental, and $N=$ $K(f(x) / g(x))$ then the degree of the extension L / N is precisely the maximum degree of f and g. In our case both f and g have degree six, so that L / N has degree six. It follows that $N=M$, as required.
The j-invariant extends to a morphism $\mathbb{P}^{1} \longrightarrow \mathbb{P}^{1}$. This morphism is surjective and also sends 0,1 and ∞ to ∞. It follows that the j-invariant takes values in \mathbb{A}^{1}.
3. Typically $G=V$ so that the quotient is trivial. There are two other possibilities. It is possible that there is an extra involution. For example, $z \longrightarrow 1 / z$ fixes both 1 and -1 , so that the four points 0,1 , ∞ and -1 have an extra involution. In this case the j-invariant is

$$
2^{8} \frac{(1+1+1)^{3}}{1(-1-1)^{2}}=1728
$$

The other possibility is that there is an extra 3 -cycle. For example, 1 , ω, ω^{2} and ∞ are fixed under $z \longrightarrow \omega z$. Subtracting 1 , we get $0, \omega-1$, $\omega^{2}-1$ and ∞. Dividing through by $\omega-1$ we get $0,1,1+\omega$ and ∞. The j-invariant is

$$
2^{8} \frac{\left((\omega+1)^{2}-(1+\omega)+1\right)^{3}}{(1+\omega)(\omega))^{2}}=2^{8} \frac{\left(\omega^{2}+\omega+1\right)^{3}}{(1+\omega)(\omega))^{2}}=0 .
$$

Now there are no configuration of points with anymore symmetries, since then $G=S_{4}$ and the j-invariant would have to be both 1728 and 0 , impossible.
4. Let $p_{1}, p_{2}, \ldots, p_{n}$ be n points in \mathbb{P}^{1}. We denote an unordered set of points by the formal sum

$$
D=p_{1}+p_{2}+\cdots+p_{n}
$$

Associate to D the polynoial of degree n

$$
F(X, Y)
$$

whose zeroes are given by D (clearly the zeroes of a polynomial are unordered). Note that D is determined by the equivalence class of F up to scalars, that is, a point of

$$
\mathbb{P}\left(\operatorname{Sym}^{n}\left(V^{*}\right)\right)
$$

Since the latter space is isomorphic to \mathbb{P}^{n}, the result follows.
5. Note that we have a commutative diagram

Here the diagonal map is simply the natural map which associates to an ordered pair $\left(p_{1}, p_{2}, \ldots, p_{n}\right)$ an unordered pair $D=p_{1}+p_{2}+\cdots+p_{n}$. In other words, to show that the rational map j extends across the big diagonal (where two points come together) it suffices to prove that the cross-ratio extends across a component of the big diagonal, and that the value we get is independent of re-ordering.
Thus we may assume that p_{1}, p_{2}, p_{3} are distinct and p_{4} is approaching p_{3}. Note that as a map to \mathbb{P}^{1}, the cross-ratio is given as

$$
\left(p_{1}, p_{2}, p_{3}, p_{4}\right) \longrightarrow\left[\left(p_{1}-p_{4}\right)\left(p_{2}-p_{3}\right):\left(p_{1}-p_{3}\right)\left(p_{2}-p_{4}\right)\right]
$$

It follows that the morphism is well defined, since neither factor is zero when $p_{3}=p_{4}$. In fact it is clear that under these circumstances the cross-ratio approaches $[1: 1]$. The only other possibilities are that the
cross-ratio approaches either $[0: 1]$ or $[1: 0]$. If $\lambda=0,1$, or ∞, then $j=\infty$.
So as two points approach each other, the j-invariant approaches ∞.
6. Suppose that the point $p=[v]$ and that the plane H corresponds to $W \subset V$. Then a line l containing p, contained in H is spanned by the vector v and a vector $w \in W$, so that as a point of $\mathbb{P}\left(\bigwedge^{2} V\right)$, $[l]=[\omega]=[v \wedge w]$. Now if W has basis v, w_{1}, w_{2}, then we can choose $w=a w_{1}+b w_{2}$, so that vector ω lies in the plane $v \wedge w_{1}$ and $v \wedge w_{2}$; indeed $\omega=a v \wedge w_{1}+b v \wedge w_{2}$. But this corresponds to a line L in \mathbb{P}^{5}, lying on the Grassmannian.
Now suppose that we have a line L in \mathbb{P}^{5}, lying on the Grassmannian. Any such line consists of a family $\omega=a \omega_{1}+b \omega_{2}$ of decomposable forms, so that $\omega_{i}=u_{i} \wedge v_{i}$. Now if the span of the vectors u_{1}, u_{2}, v_{1} and v_{2} is the whole of V, then $\omega_{1}+\omega_{2}$ is indecomposable. Otherwise v_{2} is a linear combination of u_{1}, u_{2} and v_{1}, so that L parametrises lines in W, the span of u_{1}, u_{2}, and v_{1}. But then ω_{1} and ω_{2} must be divisible by the same vector v (for example, by duality). Thus $p=[v]$ and $H=\mathbb{P}(W)$. 7. Suppose $p=[v]$. If the line l contains p, then it may be represented by $\omega=v \wedge w$. Suppose that we extend v to a basis v, w_{1}, w_{2}, w_{3}. Then we may assume that $w=a_{1} w_{1}+a_{2} w_{2}+a_{3} w_{3}$, so that l is represented by $a_{1} \omega_{1}+a_{2} \omega_{2}+a_{3} \omega_{3}$, where $\omega_{i}=v \wedge w_{i} . \quad \Sigma_{p}$ is the corresponding plane.
Now suppose that $H=\mathbb{P}(W)$. Pick a basis w_{1}, w_{2}, w_{3} for W. Then a line l in H is represented by a form $\omega=a_{1} w_{2} \wedge w_{3}+a_{2} w_{3} \wedge w_{1}+a_{3} w_{1} \wedge w_{2}$. Since any rank two from in a three dimensional space is automatically decomposable, the result follows easily. Alternatively, lines contained in H are the same as lines containing $[H]$ in the dual projective space. Another way to proceed, in either case, is as follows. Consider the surface $P=\Sigma_{H}$. Pick any two points $[l]$ and $[m] \in P$. Then l and m are two lines in \mathbb{P}^{3}, which are contained in H. Then l and m must intersect and we set $p=l \cap m$. Then we get a line $L=\Sigma_{p} \cap \Sigma_{H}=\Sigma_{p}, H \subset P$, by 6 , which contains the original two points $[l]$ and $[m] \in L$. It follows that through every two points of the surface P, we may find a unique line L. It follows easily that P is a plane. Similarly for Σ_{p}.
Now suppose that we are given a plane P inside $\mathbb{G}(1,3) \subset \mathbb{P}^{5}$. By 6 , if $L \subset P$ is a line then there is a point $p \in \mathbb{P}^{3}$ and a plane $H \subset \mathbb{P}^{3}$ such that $L=\Sigma_{p, H}$. Suppose that we can find three lines $L_{i}=\Sigma_{p_{i}, H_{i}} \subset$ $P, i=1,2$ and 3 , which form a triangle \triangle, such that $\left\{p_{1}, p_{2}, p_{3}\right\}$ has cardinality three. Let $l_{i j} \subset \mathbb{P}^{3}$ be the line corresponding to the intersection point $L_{i} \cap L_{j}$. Then $l_{i j}=\left\langle p_{i}, p_{j}\right\rangle$. In particular p_{1}, p_{2} and p_{3} are not collinear so that they span a plane $H=\left\langle p_{1}, p_{2}, p_{3}\right\rangle$. If
$H \neq H_{i}$ then $l_{i j}=H \cap H_{i}$, for $j \neq i$, a contradiction ($l_{i j}$ must depend on j). Thus $H_{1}=H_{2}=H_{3}=H$. Now let $L=\Sigma_{q, K} \subset P$ be an arbitrary line. Suppose that $K \neq H$. If m is the line corresponding to a point where L meets the triangle \triangle then $m=H \cap K$. Since L meets the triangle \triangle in at least two points, this is a contradiction. Thus $K=H$ and $P=\Sigma_{H}$.
It remains to deal with the case that there is no such triangle. Note that the map

$$
f: \check{P} \longrightarrow \mathbb{P}^{3}
$$

which assigns to the line $L \subset P$ the point $p \in \mathbb{P}^{3}$, where $L=\Sigma_{p, H}$, is a morphism. If this map is not constant then it is easy to find a triangle such that $\left\{p_{1}, p_{2}, p_{3}\right\}$ has cardinality three. But if f is constant then $P=\Sigma_{p}$.

