MODEL ANSWERS TO HWK \#5

1. Suppose that the two dimensional vector space corresponding to l_{i} is spanned by u_{i} and v_{i}. Let l be a line that meets l_{1} at p and l_{2} at q. As $p \in l_{1}$ and $q \in l_{2}, l$ is represented by $\omega=\left(a_{1} u_{1}+b_{1} v_{1}\right) \wedge\left(a_{2} u_{2}+b_{2} v_{2}\right)$. Expanding, ω is a combination of $u_{1} \wedge u_{2}, u_{1} \wedge v_{2}, v_{1} \wedge u_{2}$ and $v_{1} \wedge v_{2}$. Let U be the span of these four vectors. In particular the locus of lines which meets l_{1} and l_{2} is certainly a subset of $\mathbb{P}(U)$. But the condition that any such form is decomposable, is equivalent to the condition that it is of the form $\omega=\left(a_{1} u_{1}+b_{1} v_{1}\right) \wedge\left(a_{2} u_{2}+b_{2} v_{2}\right)$. If we expand ω then we get the standard embedding of $\mathbb{P}^{1} \times \mathbb{P}^{1}$ into \mathbb{P}^{3} (up to change of sign).
Alternatively it is clear that abstractly the locus of lines meeting l_{1} and l_{2} is isomorphic to $\mathbb{P}^{1} \times \mathbb{P}^{1}$, as a line is specified by its intersection with l_{1} and l_{2}.
If l_{1} and l_{2} intersect, then a line that meets both of them is ether a line that contains $p=l_{1} \cap l_{2}$ or a line contained in the plane $H=\left\langle l_{1}, l_{2}\right\rangle$. Thus the locus of lines is the union $\Sigma_{p} \cup \Sigma_{H}$, which we have seen is the union of two planes. There locus of lines which meet p and are contained in H is a line. So $\Sigma_{p} \cup \Sigma_{H}$ is the union of two planes meeting along a line.
2. The point is that there is no moduli to this question, so that we are free to choose our favourite quadric. If we take $X W=Y Z$, so that we have the image of $\mathbb{P}^{1} \times \mathbb{P}^{1}$ under the morphism

$$
\left(\left[X_{0}: X_{1}\right],\left[Y_{0}: Y_{1}\right]\right) \longrightarrow\left[X_{0} Y_{0}: X_{1} Y_{0}: X_{0} Y_{1}: X_{1} Y_{1}\right]
$$

then the two families of lines are

$$
[a S: a T: b S: b T] \quad \text { and } \quad[a S: b S: a T: b T]
$$

where the pair $[a: b]$ parametrises the two families, and $[S: T]$ parametrises the lines themselves (for fixed $[a: b]$). Thus a general line from the first family is the span of

$$
[a: 0: b: 0] \quad \text { and } \quad[0: a: 0: b]
$$

whilst a general line from the second family is the span of

$$
[a: b: 0: 0] \quad \text { and } \quad[0: 0: a: b]
$$

Thus a line from the first (respectively second family) is represented by
$\omega=\left(a e_{1}+b e_{3}\right) \wedge\left(a e_{2}+b e_{4}\right) \quad$ respectively $\quad\left(a e_{1}+b e_{2}\right) \wedge\left(a e_{3} \wedge b e_{4}\right)$.
Expanding, the family of lines from the first family is given as

$$
a^{2}\left(e_{1} \wedge e_{2}\right)+a b\left(e_{1} \wedge e_{4}+e_{3} \wedge e_{2}\right)+b^{2}\left(e_{3} \wedge e_{4}\right)
$$

and the second is given as

$$
a^{2}\left(e_{1} \wedge e_{3}\right)+a b\left(e_{1} \wedge e_{4}+e_{2} \wedge e_{3}\right)+b^{2}\left(e_{2} \wedge e_{4}\right)
$$

Thus we get two conics lying in the two planes spanned by $e_{1} \wedge e_{2}$, $e_{1} \wedge e_{4}+e_{3} \wedge e_{2}$ and $e_{3} \wedge e_{4}$, and $e_{1} \wedge e_{3}, e_{1} \wedge e_{4}+e_{2} \wedge e_{3}$ and $e_{2} \wedge e_{4}$. Since these vectors span $\wedge^{2} V$, the two planes are complementary, and neither of them is contained in $\mathbb{G}(1,3)$.
Now suppose that we have a plane conic $C \subset \mathbb{G}(1,3)$, where the span Λ of C, is not contained in $\mathbb{G}(1,3)$. In this case, by reasons of degree, $C=\Lambda \cap \mathbb{G}(1,3)$.
Suppose that when we take two general points of the conic the corresponding lines l and m intersect in \mathbb{P}^{3}. Pick a third point, corresponding to a third line n. If there is a common point p to all three then the conic C meets the plane Σ_{p} in three points, so that the conic C must contain the line $\Sigma_{p} \cap \Lambda$, a contradiction. But then l, m and n must be coplanar (they lie in the plane spanned H by the three intersection points $m \cap n, l \cap n$ and $l \cap m)$. In this case C contains three points of the plane Σ_{H}, so that it contains the line $\Lambda \cap \Sigma_{H}$, a contradiction.
So now we know that two general points of C correspond to two skew lines. There are two ways to finish. Here is the first. We may find three points of C which correspond to three skew lines l, n and m. Three skew lines have no moduli, that is, any three skew lines are projectively equivalent (proved in class), so there is an element $\phi \in \mathrm{PGL}_{4}(K)$ which carries these three lines to any other three. ϕ acts on $\mathbb{P}\left(\wedge^{2} V\right)$, fixing $\mathbb{G}(1,3)$ and carries three points of the plane Λ to any other three points of $\mathbb{G}(1,3)$ which correspond to three skew lines. But any plane is determined by any three points which are not collinear and so we may assume that Λ is the plane coming from the quadric, as above.
Here is the second. $\mathbb{G}(1,3)$ is determined by a quadratic polynomial of maximal rank. This determines a bilinear form on $\wedge^{2} V$ (up to scalars). In particular given Λ there is a dual plane Λ^{\prime}, which is complementary to Λ and is also not contained in $\mathbb{G}(1,3)$. Let $C^{\prime}=\Lambda^{\prime} \cap \mathbb{G}(1,3)$, another smooth conic. Since Λ^{\prime} is dual to Λ under the pairing determined by $\mathbb{G}(1,3)$ this says that if we pick $[u \wedge v] \in C$ and $\left[u^{\prime} \wedge v^{\prime}\right] \in C^{\prime}$ then $u \wedge v \wedge u^{\prime} \wedge v^{\prime}=0$, that is, the corresponding lines l and l^{\prime} are concurrent.

So now we have two families of skew lines $\{l\}$ and $\left\{l^{\prime}\right\}$ in \mathbb{P}^{3}, such that a pair of lines from both families are concurrent. Pairs of lines from both families are parametrised by $\mathbb{P}^{1} \times \mathbb{P}^{1}$ and we get a morphism

$$
\mathbb{P}^{1} \times \mathbb{P}^{1} \longrightarrow \mathbb{P}^{3}
$$

which sends pair (l, m) to $l \cap m$. This morphism has a bidegree, which must be $(1,1)$ since $\mathbb{P}^{1} \times\{p\}$ and $\{q\} \times \mathbb{P}^{1}$ are both sent to a line. But then the image is the Segre, up to projective equivalence and C is just the family of lines of one ruling.
If Λ is contained in $\mathbb{G}(1,3)$ then $\Lambda=\Sigma_{p}$ or Σ_{H}. In the first case, a conic in Σ_{p} is the same as the family of lines in a quadric cone (which automatically pass through the vertex p of the cone). If $\Lambda=\Sigma_{H}$, then a conic $C \subset \Lambda$ is simply the family of tangent lines to a conic in H.
3. Let's warm up a little and see what happens if we start with the line m given by $Z_{2}=Z_{3}=0$. Note that for each point p of this line we get a plane $\Sigma_{p} \subset \mathbb{G}(1,3)$. So we want a family of planes inside $\mathbb{G}(1,3)$. The natural guess is that this family is given by a hyperplane section. If we look at the hyperplane section $p_{34}=0$ we get a cone over a quadric in \mathbb{P}^{3}. This is indeed covered by copies of \mathbb{P}^{2}. The condition that $p_{34}=0$ means that that the term $e_{3} \wedge e_{4}$ does not appear, which is the condition that we meet the line m.
(a) Since a conic degenerates to a union of two intersecting lines, the equation defining this conic ought to be quadratic. Consider $\lambda Z_{1}^{2}-$ $\mu Z_{0} Z_{2}$. If we let λ go to zero then we get $Z_{0} Z_{2}=0$, the union of two lines. This gives the equation $p_{14} p_{34}$. On the other hand if we let μ go to zero we get the line $Z_{1}^{2}=0$ counted twice. This gives the equation $p_{24}^{2}=0$. So we guess the equation we want is some linear combination of $p_{14} p_{34}$ and $p_{24}^{2}=0$. Let's guess

$$
p_{14} p_{34}=p_{24}^{2} .
$$

Now an open subset of points of the conic has the form $\left[t^{2}: t: 1: 0\right]$. Thus an open subset of the points of the Grassmannian which intersect this conic has the form

$$
\left(\begin{array}{cccc}
t^{2} & t & 1 & 0 \\
0 & a & b & 1
\end{array}\right) .
$$

We have $p_{14}=t^{2}, p_{34}=1$ and $p_{24}=t$. Clearly these set of points satisfy the equation $p_{14} p_{34}=p_{24}^{2}$. Now suppose we start with a line l whose Plücker coordinates satisfy this equation. Let $A=\left(a_{i j}\right)$ be a 2×4 matrix whose rows span the plane corresponding to l. If the last column is zero then $p_{i 4}=0$ and the equation holds automatically. Applying elementary row operations, we may assume that the last column is the vector $(0,1)$. In this case $p_{i 4}=a_{1 i}$ and the first row has the form
$\left(t^{2}, t, 1,0\right)$ or it is equal to $(1,0,0,0)$. Either way, this corresponds to a point on the conic.
(b) Recall that the ideal of the twisted cubic C is generated by the three quadrics $Q_{0}=Z_{0} Z_{3}-Z_{1} Z_{2}, Q_{1}=Z_{1}^{2}-Z_{0} Z_{2}, Q_{2}=Z_{2}^{2}-Z_{1} Z_{3}$. Now note that a line l intersects the twisted cubic if and only if the restrictions of Q_{0}, Q_{1} and Q_{2} to l span a vector space of dimension at most two.
Indeed if the line l intersects C then $q_{i}=\left.Q_{i}\right|_{l}$ all have a common zero and so cannot span the full space of quadratic polynomials on l, which has dimension three (and no common zeroes). Conversely if q_{0}, q_{1} and q_{2} span a vector space of dimension at most two then some linear combination $Q=\lambda_{0} Q_{0}+\lambda_{1} Q_{1}+\lambda_{2} Q_{2}$ contains the line l. In this case l is a line of one of the rulings of Q, C is a curve of type $(2,1)$ on $Q \simeq \mathbb{P}^{1} \times \mathbb{P}^{1}$ and so l intersects C in one (or two) point(s).
Consider the open subset U of the Grassmannian where $p_{12}=1$, that is consider matrices of the form

$$
A=\left(\begin{array}{llll}
1 & 0 & a & b \\
0 & 1 & c & d
\end{array}\right) .
$$

Natural coordinates on any line $l \in U$ are $X=Z_{0}$ and $Y=Z_{1}$. In fact at the point $[\lambda: \mu: \lambda a+\mu c: \lambda b+\mu d]$ of the line, we have

$$
\begin{aligned}
& Z_{0}=\lambda=X \\
& Z_{1}=\mu=Y \\
& Z_{2}=\lambda a+\mu c=a X+c Y \\
& Z_{3}=\lambda b+\mu d=b X+d Y .
\end{aligned}
$$

In this basis

$$
\begin{aligned}
& q_{0}=b X^{2}+(d-a) X Y-c Y^{2} \\
& q_{1}=-a X^{2}-c X Y+Y^{2} \\
& q_{2}=a^{2} X^{2}-(2 a c-b) X Y+\left(c^{2}-d\right) Y^{2}
\end{aligned}
$$

It follows that the locus where are interested in is the rank two locus of the following matrix

$$
\left(\begin{array}{ccc}
b & d-a & -c \\
-a & -c & 1 \\
a^{2} & 2 a c-b & c^{2}-d
\end{array}\right)
$$

If we expand this determinant then we get

$$
-a d^{2}+a c^{2} d+b c d+2 a^{2} d-b c^{3}-3 a b c+b^{2}-a^{3} .
$$

Note that $e=a d-b c$ is a determinant. Thus the term of degree four simplifies to

$$
a c^{2} d-b c^{3}=c^{2}(a d-b c)=c^{2} e
$$

Note that $a=-p_{23} / p_{12}, b=-p_{24} / p_{12}, c=p_{13} / p_{12}, d=p_{14} / p_{12}$, and $e=p_{34} / p_{12}$. Substituting and multiplying by p_{12}^{3} gives an equation of degree three in the Plücker coordinates,

$$
p_{13}^{2} p_{34}+p_{23} p_{14}^{2}-p_{24} p_{13} p_{14}+2 p_{23}^{2} p_{14}-3 p_{23} p_{24} p_{13}+p_{12} p_{24}^{2}+p_{23}^{3}
$$

