MODEL ANSWERS TO HWK #7

1. Let U be the free abelian semigroup generated by v_1, v_2, \ldots, v_m (so that U is abstractly isomorphic to \mathbb{N}^m). Define a semigroup homomorphism $U \longrightarrow S_{\sigma}$ by sending v_i to u_i . This is surjective and the kernel is generated by relations of the form

$$\sum a_i v_i - \sum b_i v_i,$$

where

$$\sum a_i u_i = \sum b_i u_i$$

in S_{σ} . The group algebra A_{σ} is generated by $x_i = \chi^{u_i}$. Define a ring homomorphism

$$K[x_1, x_2, \ldots, x_n] \longrightarrow A_{\sigma},$$

by sending x_i to χ^{u_i} . Then the kernel certainly contains relations of the form

$$x_1^{a_1}x_2^{a_2}\ldots x_m^{a_m} - x_1^{b_1}x_2^{b_2}\ldots x_m^{b_m},$$

where

$$\sum a_i u_i = \sum b_i u_i.$$

If we quotient out by these relations, then we get a vector space Q with one dimensional eigenspaces indexed by $u \in S_{\sigma}$. As A_{σ} has the same property (the corresponding eigenspaces are spanned by the monomials χ^{u}) the induced linear map $Q \longrightarrow A_{\sigma}$ is an isomorphism. So the given relations actually generate the kernel.

2. 5.1. (a) Note that there are perfect pairings

$$\mathcal{E} \times \mathcal{E} \longrightarrow \mathcal{O}_X.$$

and

$$\check{\mathcal{E}} \times (\check{\mathcal{E}}) \check{} \longrightarrow \mathcal{O}_X.$$

Thus $\mathcal{E} \simeq (\check{\mathcal{E}})$.

(b) Let $U \subset X$ be an open subset. There is a natural $\mathcal{O}_X(U)$ -module homomorphism

$$\check{\mathcal{E}}(U) \underset{\mathcal{O}_X(U)}{\otimes} \mathcal{F}(U) \longrightarrow \operatorname{Hom}_{\mathcal{O}_U}(\mathcal{E}|_U, \mathcal{F}_U).$$

This defines a homomorphism from the presheaf to the sheaf, and from there a morphism between sheaves.

This map is an isomorphism if and only if it is an isomorphism on stalks. So we may assume that \mathcal{E} is free. Since both sides commute

with the direct sum, we may assume that $\mathcal{E} = \mathcal{O}_X$, in which case the result is clear, since both sides are \mathcal{F} .

(c) If M, N and P are three A-modules, then there is a natural isomorphism

$$\operatorname{Hom}_{A}(M \underset{A}{\otimes} N, P) \simeq \operatorname{Hom}_{A}(M, \operatorname{Hom}_{A}(N, P)).$$

(d)

5.2. (a) X has two open subsets, $U_0 = X = \{x_0, x_1\} = \operatorname{Spec} R$ and $U_1 = \{x_1\} = \operatorname{Spec} K$, which are both affine. Let $M = H^0(U_0, \mathcal{F})$ and $L = H^0(U_1, \mathcal{F})$. Then M is an R-module and L is a K-module. On the other hand, L is also the stalk at the generic point of an irreducible scheme, so that L is a field. Restricting sections from X to U_1 defines a homomorphism

$$\rho\colon M \underset{R}{\otimes} K \longrightarrow L$$

Conversely, a sheaf is nothing more than the data of M, L and the morphism ρ .

(b) If $\mathcal{F} = M$ then it is easy to see that ρ is an isomorphism. On the other hand, given M, there is exactly one quasi-coherent sheaf \mathcal{F} such that $M = H^0(U_0, \mathcal{F})$. Thus \mathcal{F} is a quasi-coherent sheaf if and only if ρ is an isomorphism.

5.3. Define a ring homomorphism

$$\rho \colon \operatorname{Hom}_{\mathcal{O}_X}(M, \mathcal{F}) \longrightarrow \operatorname{Hom}_A(M, \Gamma(X, \mathcal{F})),$$

by taking global sections. Define a ring homomorphism

$$\sigma \colon \operatorname{Hom}_A(M, \Gamma(X, \mathcal{F})) \longrightarrow \operatorname{Hom}_{\mathcal{O}_X}(M, \mathcal{F}),$$

as follows.

Suppose that $f \in A$ and $\phi \colon M \longrightarrow \Gamma(X, \mathcal{F})$. Then $(\tilde{M})(U_f) = M_f.$

$$(\tilde{M})(U_f) = M_f$$

Further, $\mathcal{F}(U_f)$ is an A_f -module, so that ϕ induces a natural homomorphism

$$M_f \longrightarrow \mathcal{F}(U_f).$$

Composing gives us a homomorphism

$$\sigma(\phi)(U_f) \colon \tilde{M}(U_f) \longrightarrow \mathcal{F}(U_f)$$

As U_f are a base for the topology, we can glue these maps to get

$$\sigma(\phi)\colon \tilde{M} \longrightarrow \mathcal{F}.$$

This defines σ , and it is easy to see that this is the inverse to ρ . 5.4. We may as well assume that $X = \operatorname{Spec} A$. Suppose that \mathcal{F} is quasicoherent. Then there is an A-module M such that $\mathcal{F} = M$. M is the quotient of a free module F (e.g take the free module with generators the elements of M). Then there is a short exact sequence

$$0 \longrightarrow R \longrightarrow F \longrightarrow M \longrightarrow 0.$$

R is a free module, as it is a submodule of a free module. It follows that there is an exact sequence of sheaves

$$0 \longrightarrow \tilde{R} \longrightarrow \tilde{F} \longrightarrow \mathcal{F} \longrightarrow 0.$$

By hypothesis, \tilde{R} and \tilde{F} are free sheaves.

On the other hand, the quotient of a quasi-coherent sheaf is quasicoherent and a free sheaf is quasi-coherent, so that the quotient of a free sheaf is quasi-coherent.

If \mathcal{F} is coherent then we may assume that F is finitely generated, in which case R is finitely generated. But then \mathcal{R} and \mathcal{G} have finite rank. On the other hand a free sheaf of finite rank is coherent and if X is Noetherian then a quotient of a coherent sheaf is coherent, so that the quotient of a free sheaf of finite rank is coherent.

5.5. (a) Let $X = \mathbb{A}^1 - \{0\}$ and $Y = \mathbb{A}^1$ and let $f: X \longrightarrow Y$ be the natural inclusion. Let $\mathcal{F} = \mathcal{O}_X$. \mathcal{F} is clearly coherent. As Y is affine and $\mathcal{G} = f_*\mathcal{F}$ is quasi-coherent, $\mathcal{G} = \tilde{M}$, where $M = K[x, x^{-1}]$ is a K[x]-module. As M is not a finitely generated K[x]-module, it follows that \mathcal{G} is not coherent.

(b) Since the property of being a closed immersion and being a finite morphism is local on Y, we may assume that $Y = \operatorname{Spec} B$ is affine. In this case, $X = \operatorname{Spec} A$ is affine as it is isomorphic to a closed subset of an affine variety. As f is a closed immersion, A is a quotient of B. It follows that A is a finitely generated B-module, so that f is a finite morphism.

(c) Since the property of being coherent and being a finite morphism is local on Y, we may assume that $Y = \operatorname{Spec} B$ is affine. In this case $X = \operatorname{Spec} A$ is affine and A is a finitely generated B-module. As X is affine, $\mathcal{F} = \tilde{M}$, for some A-module M. Then $f_*\mathcal{F} = \tilde{M}$, but where M is now considered as a B-module. Suppose that B is generated by b_1, b_2, \ldots, b_s , as an A-module, and that M is generated by m_1, m_2, \ldots, m_t , as a B-module. Then M is generated by $b_i m_j$, $1 \leq i \leq s$ and $1 \leq j \leq t$. Thus $f_*\mathcal{F}$ is coherent.

5.6 (a) Note that $m \in M$ is zero in $M_{\mathfrak{p}} = M_{\mathfrak{p}}$ if and only if there is an element $a \in A$, not in \mathfrak{p} , such that $a \cdot m = 0$. But then $\mathfrak{p} \in \operatorname{Supp} m$ if and only if there $a \in A$, not in \mathfrak{p} , such that $a \cdot m \neq 0$, that is, $a \notin \operatorname{Ann} m$.

(b) Pick generators m_1, m_2, \ldots, m_k for the A-module M. Then

$$\operatorname{Ann} M = \sum \operatorname{Ann} m_i$$

On the other hand, the images of m_1, m_2, \ldots, m_k generate the stalks. It follows that

$$\operatorname{Supp} \mathcal{F} = \bigcap_{i=1}^{k} V(\operatorname{Ann} m_i) = V(\operatorname{Ann} M).$$

(c) One can check this locally, so this follows immediately from (b). (d) By (II.1.20) $\mathcal{H}^0_Z(\mathcal{F})$ is a subsheaf of \mathcal{F} , so that $\mathcal{H}^0_Z(\mathcal{F})$ is quasi-coherent.

$$\Gamma_Z(\mathcal{F}) \subset M,$$

is the subset of sections vanishing on U = X - Z. This is clearly $\Gamma_{\mathfrak{a}}(M)$. (e) One can check this locally, so this follows immediately from (d).