FINAL EXAM MATH 20F, UCSD, AUTUMN 14

You have three hours.

Problem	Points	Score
1	25	
2	15	
3	15	
4	15	
5	15	
6	10	
7	10	
8	15	
9	10	
10	20	
11	10	
12	10	
13	10	
14	10	
15	10	
Total	200	

There are 15 problems, and the total number of points is 200. Show all your work. *Please make your work as clear and easy to follow as possible.*

Name:_____

Signature:_____

1. (25pts) (i) Show that the matrix

1	0	3	-6	6	4	-5		/1	-3	4	-3	2	5	
	3	-7	8	-5	8	9	is row equivalent to	0	1	-2	2	1	-3	
	3	-9	12	-9	6	15		$\left(0 \right)$	0	0	0	1	4 /	

To get full credit for this problem, you **must** show your steps and explain what row operations you are using at each stage.

Solution: We swap the first and third rows; we multiply the first row by 1/3:

$$\begin{pmatrix} 0 & 3 & -6 & 6 & 4 & -5 \\ 3 & -7 & 8 & -5 & 8 & 9 \\ 3 & -9 & 12 & -9 & 6 & 15 \end{pmatrix} \rightarrow \begin{pmatrix} 3 & -9 & 12 & -9 & 6 & 15 \\ 3 & -7 & 8 & -5 & 8 & 9 \\ 0 & 3 & -6 & 6 & 4 & -5 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & -3 & 4 & -3 & 2 & 5 \\ 3 & -7 & 8 & -5 & 8 & 9 \\ 0 & 3 & -6 & 6 & 4 & -5 \end{pmatrix}$$

Then we multiply the first row by -3 and add it to the third row; we multiply the second row by 1/2; we multiply the second row by -3 and add it to the third row:

$$\begin{pmatrix} 1 & -3 & 4 & -3 & 2 & 5 \\ 0 & 2 & -4 & 4 & 2 & -6 \\ 0 & 3 & -6 & 6 & 4 & -5 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & -3 & 4 & -3 & 2 & 5 \\ 0 & 1 & -2 & 2 & 1 & -3 \\ 0 & 3 & -6 & 6 & 4 & -5 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & -3 & 4 & -3 & 2 & 5 \\ 0 & 1 & -2 & 2 & 1 & -3 \\ 0 & 0 & 0 & 0 & 1 & 4 \end{pmatrix}.$$

(ii) Find the general solution to the linear equations in parametric form:

$$3x_2 - 6x_3 + 6x_4 + 4x_5 = -5$$

$$3x_1 - 7x_2 + 8x_3 - 5x_4 + 8x_5 = 9$$

$$3x_1 - 9x_2 + 12x_3 - 9x_4 + 6x_5 = 15.$$

Solution: By part (i) we can use

$$\begin{pmatrix} 1 & -3 & 4 & -3 & 2 & 5 \\ 0 & 1 & -2 & 2 & 1 & -3 \\ 0 & 0 & 0 & 0 & 1 & 4 \end{pmatrix}.$$

to solve the system by back substitution:

 x_1 , x_2 and x_5 are basic variables, x_3 and x_4 are free variables.

The last equation reads $x_5 = 4$. The second equation reads

 $x_2 - 2x_3 + 2x_4 + 4 = -3$ so that $x_2 = 2x_3 - 2x_4 - 7$.

The first equation reads

 $x_1-3(2x_3-2x_4-7)+4x_3-3x_4+8=5$ so that $x_1=2x_3-3x_4-24$. The general solution is

$$(x_1, x_2, x_3, x_4, x_5) = (2x_3 - 3x_4 - 24, 2x_3 - 2x_4 - 7, x_3, x_4, 4)$$

= (-24, -7, 0, 0, 4) + x₃(2, 2, 1, 0, 0) + x₄(-3, -2, 0, 1, 0)

2. (15 pts) Let

$$A = \begin{pmatrix} 0 & 3 & -6 & 6 & 4 \\ 3 & -7 & 8 & -5 & 8 \\ 3 & -9 & 12 & -9 & 6 \end{pmatrix}$$

(i) Find a basis for the nullspace of A. What is the nullity of A?

Solution: We already saw in 1 (ii) that a basis for the null space is (2, 2, 1, 0, 0) and (-3, -2, 0, 1, 0). The nullity is 2.

(ii) Find a basis for the column space of A. What is the rank of A?

Solution: There are pivots in the first, second and fifth columns. (0,3,3), (3,-7,-9) and (4,8,6) is a basis for the column space. The rank is 3.

(iii) Find a basis for the row space of A.

Solution: (1, -3, 4, -3, 2), (0, 1, -2, 2, 1), (0, 0, 0, 0, 1) are a basis for the row space.

3. (15pts) For which values of h are the following vectors

$$\vec{v}_1 = (1, 1, 1)$$
 $\vec{v}_2 = (1, 2, -1)$ and $\vec{v}_3 = (1, h, -3)$

a basis of \mathbb{R}^3 ?

Solution: Let

$$A = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 2 & h \\ 1 & -1 & -3 \end{pmatrix}$$

be the matrix whose columns are the vectors \vec{v}_1 , \vec{v}_2 and \vec{v}_3 . The vectors \vec{v}_1 , \vec{v}_2 and \vec{v}_3 are a basis if and only if A is invertible. We apply Gaussian elimination:

$$\begin{pmatrix} 1 & 1 & 1 \\ 1 & 2 & h \\ 1 & -1 & -3 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & h - 1 \\ 0 & -2 & -4 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & h - 1 \\ 0 & 0 & 2h - 6 \end{pmatrix}$$

A is invertible if and only if $2h - 6 \neq 0$, that is, $h \neq 3$. So the vectors $\vec{v_1}$, $\vec{v_2}$ and $\vec{v_3}$ are a basis if and only if $h \neq 3$ 4. (15pts) (i) Let f be the linear function $f: \mathbb{R}^3 \longrightarrow \mathbb{R}^3$ given by $(x, y, z) \longrightarrow (3x-2y+z, x+y+z, 2x+y-2z).$ Find a matrix A such that $f(\vec{x}) = A\vec{x}.$

Solution:

$$A = \begin{pmatrix} 3 & -2 & 1 \\ 1 & 1 & 1 \\ 2 & 1 & -2 \end{pmatrix}.$$

(ii) Let g be the linear function $g: \mathbb{R}^3 \longrightarrow \mathbb{R}^2$ given by $(x, y, z) \longrightarrow (x + y + z, 2x - 3y + z).$ Find a matrix B such that $g(\vec{x}) = B\vec{x}.$

Solution:

$$B = \begin{pmatrix} 1 & 1 & 1 \\ 2 & -3 & 1 \end{pmatrix}.$$

(iii) Let $g \circ f$ be the composition of f and g. Find a matrix C such that $(g \circ f)(\vec{x}) = C\vec{x}$.

Solution:

$$C = BA = \begin{pmatrix} 1 & 1 & 1 \\ 2 & -3 & 1 \end{pmatrix} \begin{pmatrix} 3 & -2 & 1 \\ 1 & 1 & 1 \\ 2 & 1 & -2 \end{pmatrix} = \begin{pmatrix} 6 & 0 & 0 \\ 5 & -6 & -3 \end{pmatrix}.$$

5. (15pts) Let A be a matrix which is row equivalent to

$$U = \begin{pmatrix} 1 & 1 & 0 & -2 \\ 0 & 0 & 1 & -3 \\ 0 & 0 & 0 & 0 \end{pmatrix}.$$

(i) Is the equation $A\vec{x} = \vec{b}$ consistent for every $\vec{b} \in \mathbb{R}^3$?

Solution: No.

Since there is a row of zeroes after row reduction of A we can pick a vector \vec{b} so that there is a pivot in the last colum of the augmented matrix.

(ii) Suppose that $\vec{x} = (1, -1, 2, 0)$ is a solution to $A\vec{x} = \vec{b}$, where $\vec{b} = (1, 2, 3)$. What is the general solution to $A\vec{x} = \vec{b}$?

Solution: We solve the homogeneous by back substitution. a and c are basic variables, b and d are free.

c - 3d = 0 so that c = 3d.

Then

$$a+b-2d=0$$
 so that $a=-b+2d$.

The general solution is

(a,b,c,d) = (1,-1,2,0) + (-b+2d,b,3d,d) = (1,-1,2,0) + b(-1,1,0,0) + d(2,0,3,1).

(iii) Find a basis for the row space of A.

Solution: (1, 1, 0, -2) and (0, 0, 1, -3).

6. (10pts) Is there a linear transformation $f: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ such that f(1,1) = (0,0), f(1,-2) = (1,1) and f(0,1) = (1,-1)? If so, give an example of such an f; if not, explain why not.

Solution:

No.

Let A be the matrix associated to f. Since f(1,1) = (0,0), A has a non-trivial null space. So the nullity of A is at least one. The vectors (1,1) and (1,-1) are in the image of f. These are independent, so the column space of A contains a plane. Thus the rank of f is at least two. But the rank plus the nullity is two.

7. (10pts) Let P_2 be the vector space of all polynomials of degree at most 2,

 $P_2 = \{ a_0 + a_1 t + a_2 t^2 \mid a_0, a_1, a_2 \in \mathbb{R} \}.$ Write $5t^2 - 2t - 3$ as a linear combination of 1 - t and $1 - t^2$.

Solution: Suppose that $5t^2 - 2t - 3 = a(1 - t) + b(1 - t^2)$. Then $(a + b) - at - bt^2 = 5t^2 - 2t - 3$.

Comparing coefficients we must have:

a+b=-3 a=2 and b=-5.

So a = 2 and b = -5. Thus

 $5t^2 - 2t - 3 = 2(1 - t) - 5(1 - t^2).$

8. (15pts) What is the determinant of

$$A = \begin{pmatrix} 1 & 2 & -1 & 1 \\ 0 & -1 & 1 & 2 \\ 0 & 0 & 1 & 3 \\ 1 & 3 & 4 & 0 \end{pmatrix}?$$

Is A invertible?

Solution:

$$\begin{vmatrix} 1 & 2 & -1 & 1 \\ 0 & -1 & 1 & 2 \\ 0 & 0 & 1 & 3 \\ 1 & 3 & 4 & 0 \end{vmatrix} = \begin{vmatrix} 1 & 0 & 0 & 1 \\ 2 & -1 & 0 & 3 \\ -1 & 1 & 1 & 4 \\ 1 & 2 & 3 & 0 \end{vmatrix}$$
$$= \begin{vmatrix} -1 & 0 & 3 \\ -1 & 1 & 4 \\ 1 & 2 & 3 & 0 \end{vmatrix}$$
$$= \begin{vmatrix} -1 & 0 & 3 \\ -1 & 1 & 4 \\ 2 & 3 & 0 \end{vmatrix} - \begin{vmatrix} 2 & -1 & 0 \\ -1 & 1 & 1 \\ 1 & 2 & 3 \end{vmatrix}$$
$$= -\begin{vmatrix} 1 & 4 \\ 3 & 0 \end{vmatrix} + 3\begin{vmatrix} 1 & 1 \\ 2 & 3 \end{vmatrix} - 2\begin{vmatrix} 1 & 1 \\ 2 & 3 \end{vmatrix} - \begin{vmatrix} -1 & 1 \\ 1 & 3 \end{vmatrix}$$
$$= -\begin{vmatrix} 1 & 4 \\ 3 & 0 \end{vmatrix} + \begin{vmatrix} 1 & 1 \\ 2 & 3 \end{vmatrix} - \begin{vmatrix} -1 & 1 \\ 1 & 3 \end{vmatrix}$$
$$= 12 + 1 + 4$$
$$= 17.$$

 ${\cal A}$ is invertible as the determinant is non-zero.

9. (10pts) Find the inverse of

$$A = \begin{pmatrix} 1 & 0 & 1 \\ 1 & 0 & 2 \\ 0 & 1 & 1 \end{pmatrix}.$$

Solution: We apply Gauss-Jordan elimination to the super augmented matrix:

 $\begin{pmatrix} 1 & 0 & 1 & | & 1 & 0 & 0 \\ 1 & 0 & 2 & | & 0 & 1 & 0 \\ 0 & 1 & 1 & | & 0 & 0 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 1 & | & 1 & 0 & 0 \\ 0 & 0 & 1 & | & -1 & 1 & 0 \\ 0 & 1 & 1 & | & 0 & 0 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 1 & | & 1 & 0 & 0 \\ 0 & 1 & 1 & | & 0 & 0 & 1 \\ 0 & 0 & 1 & | & -1 & 1 & 0 \end{pmatrix}$ so that $\begin{pmatrix} 1 & 0 & 0 & | & 1 & 0 & 0 \\ 1 & 0 & 0 & | & 1 & 0 & 0 \end{pmatrix}$

$$\rightarrow \begin{pmatrix} 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & -1 & 1 & 0 \end{pmatrix}.$$

The inverse matrix is

$$\begin{pmatrix} 2 & -1 & 0 \\ 1 & -1 & 1 \\ -1 & 1 & 0 \end{pmatrix}.$$

10. (20pts) (i) Check that the vectors $\vec{v}_1 = (1, 1, -1)$, $\vec{v}_2 = (0, 1, 1)$ and $\vec{v}_3 = (2, -1, 1)$ are an orthogonal basis of \mathbb{R}^3 .

Solution: $\vec{v}_1 \cdot \vec{v}_2 = (1, 1, -1) \cdot (0, 1, 1) = 0$, $\vec{v}_1 \cdot \vec{v}_3 = (1, 1, -1) \cdot (2, -1, 1) = 0$, and $\vec{v}_2 \cdot \vec{v}_3 = (0, 1, 1) \cdot (2, -1, 1) = 0$. They are orthogonal and so they are independent. Hence they are a basis.

(ii) Let $\vec{v} = (5, 2, -2)$. Compute $\vec{v}_1 \cdot \vec{v}, \vec{v}_2 \cdot \vec{v}$ and $\vec{v}_3 \cdot \vec{v}$.

Solution: $\vec{v}_1 \cdot \vec{v} = (5, 2, -2) \cdot (1, 1, -1) = 9$, $\vec{v}_2 \cdot \vec{v} = (5, 2, -2) \cdot (0, 1, 1) = 0$ and $\vec{v}_3 \cdot \vec{v} = (5, 2, -2) \cdot (2, -1, 1) = 6$.

(iii) Compute $\vec{v}_1 \cdot \vec{v}_1$, $\vec{v}_2 \cdot \vec{v}_2$ and $\vec{v}_3 \cdot \vec{v}_3$.

Solution: $\vec{v}_1 \cdot \vec{v}_1 = (1, 1, -1) \cdot (1, 1, -1) = 3$, $\vec{v}_2 \cdot \vec{v}_2 = (0, 1, 1) \cdot (0, 1, 1) = 2$ and $\vec{v}_3 \cdot \vec{v}_3 = (2, -1, 1) \cdot (2, -1, 1) = 6$.

(iv) Write \vec{v} as a linear combination of \vec{v}_1 , \vec{v}_2 and \vec{v}_3 .

Solution:

$$\vec{v} = 3\vec{v}_1 + \vec{v}_3.$$

11. (10pts) Let W be the span of $\vec{v}_1 = (1, 0, 1, 1)$, $\vec{v}_2 = (0, -1, 1, 1)$ and $\vec{v}_3 = (2, 1, -2, 3)$. Find an orthogonal basis of W.

Solution: We apply Gram-Schmidt:

$$\vec{u}_1 = \vec{v}_1.$$

Then

$$\vec{u}_2 = \vec{v}_2 - \alpha \vec{u}_1 \quad \text{where} \quad (\vec{v}_2 - \alpha \vec{u}_1) \cdot \vec{u}_1 = 0.$$

Therefore
$$\alpha = \frac{\vec{v}_2 \cdot \vec{u}_1}{2} = \frac{2}{2}$$

$$\alpha = \frac{v_2 \cdot u_1}{\vec{u}_1 \cdot \vec{u}_1} = \frac{2}{3}.$$

Thus

$$\vec{u}_2 = (0, -1, 1, 1) - \frac{2}{3}(1, 0, 1, 1) = \frac{1}{3}(-2, -3, 1, 1).$$

Let's replace \vec{u}_2 by (-2, -3, 1, 1). This is still orthogonal to \vec{u}_1 . Then

$$\vec{u}_3 = \vec{v}_3 - \beta \vec{u}_1 - \gamma \vec{u}_2 \quad \text{where} \quad (\vec{v}_3 - \beta \vec{u}_1 - \gamma \vec{u}_2) \cdot \vec{u}_i = 0.$$

Therefore

$$\beta = \frac{\vec{v}_3 \cdot \vec{u}_1}{\vec{u}_1 \cdot \vec{u}_1} = \frac{3}{3} = 1 \quad \text{and} \quad \gamma = \frac{\vec{v}_3 \cdot \vec{u}_2}{\vec{u}_2 \cdot \vec{u}_2} = \frac{-4 - 3 - 2 + 3}{15} = -\frac{2}{5}.$$

Thus

1 nus

$$\vec{u}_3 = (2, 1, -2, 3) - (1, 0, 1, 1) + \frac{2}{5}(-2, -3, 1, 1) = \frac{1}{5}(1, -1, -13, 12).$$

Hence

(-2, -3, 1, 1) and (1, -1, -13, 12),(1, 0, 1, 1),is an orthogonal basis.

11

12. (10pts) Find the least squares solution to $A\vec{x} = \vec{b}$, where

$$A = \begin{pmatrix} -1 & 1\\ 1 & 1\\ 2 & 1 \end{pmatrix} \quad \text{and} \quad \vec{b} = \begin{pmatrix} 1\\ 2\\ 6 \end{pmatrix}.$$

Solution: We have to solve $(A^T A)\vec{x} = A^T \vec{b}$.

$$A^T = \begin{pmatrix} -1 & 1 & 2\\ 1 & 1 & 1 \end{pmatrix}.$$

 So

$$A^{T}A = \begin{pmatrix} -1 & 1 & 2\\ 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} -1 & 1\\ 1 & 1\\ 2 & 1 \end{pmatrix} = \begin{pmatrix} 6 & 2\\ 2 & 3 \end{pmatrix} \text{ and } A^{T}\vec{b} = \begin{pmatrix} -1 & 1 & 2\\ 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1\\ 2\\ 6 \end{pmatrix} = \begin{pmatrix} 13\\ 9 \end{pmatrix}$$

To solve
$$A^T A \vec{x} = A^T \vec{b}$$
 we apply Gaussian elimination:
 $\begin{pmatrix} 6 & 2 & | & 13 \\ 2 & 3 & | & 9 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1/3 & | & 13/6 \\ 2 & 3 & | & 9 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1/3 & | & 13/6 \\ 0 & 7/3 & | & 14/3 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1/3 & | & 13/6 \\ 0 & 1 & | & 2 \end{pmatrix}$
The elimination is complete. We solve by back substitution $u = 2$ and

The elimination is complete. We solve by back substitution. y = 2 and x + 2/3 = 13/6 so that x = 3/2. The least squares solution is (3/2, 2).

13. (10pts) Show that $\vec{v}_1 = (1, 0, -1)$ and $\vec{v}_2 = (2, -1, -1)$ are eigenvectors of

$$A = \begin{pmatrix} 0 & 0 & -2 \\ 1 & 2 & 1 \\ 1 & 0 & 3 \end{pmatrix}$$

What are the eigenvalues? *Solution:*

$$A\vec{v}_1 = \begin{pmatrix} 0 & 0 & -2\\ 1 & 2 & 1\\ 1 & 0 & 3 \end{pmatrix} \begin{pmatrix} 1\\ 0\\ -1 \end{pmatrix} = \begin{pmatrix} 2\\ 0\\ -2 \end{pmatrix} = 2 \begin{pmatrix} 1\\ 0\\ -1 \end{pmatrix} = 2\vec{v}_1$$

and

$$A\vec{v}_2 = \begin{pmatrix} 0 & 0 & -2\\ 1 & 2 & 1\\ 1 & 0 & 3 \end{pmatrix} \begin{pmatrix} 2\\ -1\\ -1 \end{pmatrix} = \begin{pmatrix} 2\\ -1\\ -1 \end{pmatrix} = \vec{v}_2$$

Therefore \vec{v}_1 and \vec{v}_2 are eigenvectors with eigenvalues 2 and 1.

14. (10 pts) Let

$$A = \begin{pmatrix} 1 & 2 & 2\\ 0 & -1 & 1\\ 0 & 0 & 2 \end{pmatrix}$$

Given that

$$\begin{pmatrix} 1 & 2 & 2\\ 0 & -1 & 1\\ 0 & 0 & 2 \end{pmatrix} \begin{pmatrix} 1\\ 0\\ 0 \end{pmatrix} = \begin{pmatrix} 1\\ 0\\ 0 \end{pmatrix} \begin{pmatrix} 1 & 2 & 2\\ 0 & -1 & 1\\ 0 & 0 & 2 \end{pmatrix} \begin{pmatrix} -1\\ 1\\ 0 \end{pmatrix} = \begin{pmatrix} 1\\ -1\\ 0 \end{pmatrix}$$

and
$$\begin{pmatrix} 1 & 2 & 2\\ 0 & -1 & 1\\ 0 & 0 & 2 \end{pmatrix} \begin{pmatrix} 8\\ 1\\ 3 \end{pmatrix} = \begin{pmatrix} 16\\ 2\\ 6 \end{pmatrix},$$

find a diagonal matrix D and an invertible matrix P such that $A = PDP^{-1}$ (there is no need to find P^{-1}).

Solution: The given vectors are eigenvectors with eigenvalues 1, -1 and 2. The eigenvalues are different so that the eigenvectors are automatically independent.

Let

$$P = \begin{pmatrix} 1 & 1 & 8 \\ 0 & -1 & 1 \\ 0 & 0 & 3 \end{pmatrix} \quad \text{and} \quad D = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 2 \end{pmatrix},$$

the matrix P whose columns are the eigenvectors and the diagonal matrix D whose entries are the eigenvalues. Then $A = PDP^{-1}$.

15. (10 pts) Let

$$A = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}$$

(i) Find a basis for the eigenspace with eigenvalue -1.

Solution: We want the null space of $A + I_3$:

(1)	1	1		(1)	1	1
1	1	1	\rightarrow	0	0	0
$\backslash 1$	1	1/		0	0	0/

x is a basic variable, y and z are free variables. x + y + z = 0, so that x = -y - z and the general solution is

$$(x, y, z) = (-y - z, y, z) = y(-1, 1, 0) + z(-1, 0, 1).$$

The eigenspace with eigenvalue -1 is the span of (-1, 1, 0) and (-1, 0, 1).

(ii) Does A have other eigenvalues? If so, identify them; if not, explain why not.

Solution: Yes. A is symmetric and there must be other eigenvectors. Consider expanding det $(A - \lambda I_3)$ as a polynomial in λ . The constant term is the value of the determinant when $\lambda = 0$:

$\begin{vmatrix} 0 \\ 1 \\ 1 \end{vmatrix}$	$\begin{array}{c} 1 \\ 0 \\ 1 \end{array}$	$\begin{array}{c} 1 \\ 1 \\ 0 \end{array}$	$=-\begin{vmatrix}1\\1\end{vmatrix}$	$\begin{vmatrix} 1 \\ 0 \end{vmatrix} + \begin{vmatrix} 1 \\ 1 \end{vmatrix}$	$\begin{vmatrix} 0\\1 \end{vmatrix} = 2.$
---	--	--	--------------------------------------	---	---

But minus the constant term is the product of the eigenvalues. Thus the products of the eigenvalues is -2. As the product of two of them is 1 the third eigenvalue is -2.