FINAL EXAM

MATH 20F, UCSD, AUTUMN 14

You have three hours.

There are 15 problems, and the total number of points is 200. Show all your work. Please make your work as clear and easy to follow as possible.

Name: \qquad
Signature: \qquad

Problem	Points	Score
1	25	
2	15	
3	15	
4	15	
5	15	
6	10	
7	10	
8	15	
9	10	
10	20	
11	10	
12	10	
13	10	
14	10	
15	10	
Total	200	

1. (25pts) (i) Show that the matrix
$\left(\begin{array}{cccccc}0 & 3 & -6 & 6 & 4 & -5 \\ 3 & -7 & 8 & -5 & 8 & 9 \\ 3 & -9 & 12 & -9 & 6 & 15\end{array}\right) \quad$ is row equivalent to $\quad\left(\begin{array}{cccccc}1 & -3 & 4 & -3 & 2 & 5 \\ 0 & 1 & -2 & 2 & 1 & -3 \\ 0 & 0 & 0 & 0 & 1 & 4\end{array}\right)$.
To get full credit for this problem, you must show your steps and explain what row operations you are using at each stage.

Solution: We swap the first and third rows; we multiply the first row by $1 / 3$:
$\left(\begin{array}{cccccc}0 & 3 & -6 & 6 & 4 & -5 \\ 3 & -7 & 8 & -5 & 8 & 9 \\ 3 & -9 & 12 & -9 & 6 & 15\end{array}\right) \rightarrow\left(\begin{array}{cccccc}3 & -9 & 12 & -9 & 6 & 15 \\ 3 & -7 & 8 & -5 & 8 & 9 \\ 0 & 3 & -6 & 6 & 4 & -5\end{array}\right) \rightarrow\left(\begin{array}{cccccc}1 & -3 & 4 & -3 & 2 & 5 \\ 3 & -7 & 8 & -5 & 8 & 9 \\ 0 & 3 & -6 & 6 & 4 & -5\end{array}\right)$
Then we multiply the first row by -3 and add it to the third row; we multiply the second row by $1 / 2$; we multiply the second row by -3 and add it to the third row:

$$
\left(\begin{array}{cccccc}
1 & -3 & 4 & -3 & 2 & 5 \\
0 & 2 & -4 & 4 & 2 & -6 \\
0 & 3 & -6 & 6 & 4 & -5
\end{array}\right) \rightarrow\left(\begin{array}{cccccc}
1 & -3 & 4 & -3 & 2 & 5 \\
0 & 1 & -2 & 2 & 1 & -3 \\
0 & 3 & -6 & 6 & 4 & -5
\end{array}\right) \rightarrow\left(\begin{array}{cccccc}
1 & -3 & 4 & -3 & 2 & 5 \\
0 & 1 & -2 & 2 & 1 & -3 \\
0 & 0 & 0 & 0 & 1 & 4
\end{array}\right) .
$$

(ii) Find the general solution to the linear equations in parametric form:

$$
\begin{aligned}
3 x_{2}-6 x_{3}+6 x_{4}+4 x_{5} & =-5 \\
3 x_{1}-7 x_{2}+8 x_{3}-5 x_{4}+8 x_{5} & =9 \\
3 x_{1}-9 x_{2}+12 x_{3}-9 x_{4}+6 x_{5} & =15 .
\end{aligned}
$$

Solution: By part (i) we can use

$$
\left(\begin{array}{cccccc}
1 & -3 & 4 & -3 & 2 & 5 \\
0 & 1 & -2 & 2 & 1 & -3 \\
0 & 0 & 0 & 0 & 1 & 4
\end{array}\right)
$$

to solve the system by back substitution:
x_{1}, x_{2} and x_{5} are basic variables, x_{3} and x_{4} are free variables.
The last equation reads $x_{5}=4$. The second equation reads

$$
x_{2}-2 x_{3}+2 x_{4}+4=-3 \quad \text { so that } \quad x_{2}=2 x_{3}-2 x_{4}-7 .
$$

The first equation reads
$x_{1}-3\left(2 x_{3}-2 x_{4}-7\right)+4 x_{3}-3 x_{4}+8=5 \quad$ so that $\quad x_{1}=2 x_{3}-3 x_{4}-24$.
The general solution is

$$
\begin{aligned}
\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right) & =\left(2 x_{3}-3 x_{4}-24,2 x_{3}-2 x_{4}-7, x_{3}, x_{4}, 4\right) \\
& =(-24,-7,0,0,4)+x_{3}(2,2,1,0,0)+x_{4}(-3,-2,0,1,0) .
\end{aligned}
$$

2. (15pts) Let

$$
A=\left(\begin{array}{ccccc}
0 & 3 & -6 & 6 & 4 \\
3 & -7 & 8 & -5 & 8 \\
3 & -9 & 12 & -9 & 6
\end{array}\right)
$$

(i) Find a basis for the nullspace of A. What is the nullity of A ?

Solution: We already saw in 1 (ii) that a basis for the null space is $(2,2,1,0,0)$ and $(-3,-2,0,1,0)$. The nullity is 2 .
(ii) Find a basis for the column space of A. What is the rank of A ?

Solution: There are pivots in the first, second and fifth columns. $(0,3,3)$, $(3,-7,-9)$ and $(4,8,6)$ is a basis for the column space. The rank is 3 .
(iii) Find a basis for the row space of A.

Solution: $(1,-3,4,-3,2),(0,1,-2,2,1),(0,0,0,0,1)$ are a basis for the row space.
3. (15pts) For which values of h are the following vectors

$$
\vec{v}_{1}=(1,1,1) \quad \vec{v}_{2}=(1,2,-1) \quad \text { and } \quad \vec{v}_{3}=(1, h,-3)
$$

a basis of \mathbb{R}^{3} ?

Solution: Let

$$
A=\left(\begin{array}{ccc}
1 & 1 & 1 \\
1 & 2 & h \\
1 & -1 & -3
\end{array}\right)
$$

be the matrix whose columns are the vectors \vec{v}_{1}, \vec{v}_{2} and \vec{v}_{3}. The vectors \vec{v}_{1}, \vec{v}_{2} and \vec{v}_{3} are a basis if and only if A is invertible.
We apply Gaussian elimination:

$$
\left(\begin{array}{ccc}
1 & 1 & 1 \\
1 & 2 & h \\
1 & -1 & -3
\end{array}\right) \rightarrow\left(\begin{array}{ccc}
1 & 1 & 1 \\
0 & 1 & h-1 \\
0 & -2 & -4
\end{array}\right) \rightarrow\left(\begin{array}{ccc}
1 & 1 & 1 \\
0 & 1 & h-1 \\
0 & 0 & 2 h-6
\end{array}\right)
$$

A is invertible if and only if $2 h-6 \neq 0$, that is, $h \neq 3$.
So the vectors \vec{v}_{1}, \vec{v}_{2} and \vec{v}_{3} are a basis if and only if $h \neq 3$
4. (15pts) (i) Let f be the linear function
$f: \mathbb{R}^{3} \longrightarrow \mathbb{R}^{3} \quad$ given by $\quad(x, y, z) \longrightarrow(3 x-2 y+z, x+y+z, 2 x+y-2 z)$.
Find a matrix A such that $f(\vec{x})=A \vec{x}$.

Solution:

$$
A=\left(\begin{array}{ccc}
3 & -2 & 1 \\
1 & 1 & 1 \\
2 & 1 & -2
\end{array}\right)
$$

(ii) Let g be the linear function

$$
g: \mathbb{R}^{3} \longrightarrow \mathbb{R}^{2} \quad \text { given by } \quad(x, y, z) \longrightarrow(x+y+z, 2 x-3 y+z)
$$

Find a matrix B such that $g(\vec{x})=B \vec{x}$.

Solution:

$$
B=\left(\begin{array}{ccc}
1 & 1 & 1 \\
2 & -3 & 1
\end{array}\right)
$$

(iii) Let $g \circ f$ be the composition of f and g. Find a matrix C such that $(g \circ f)(\vec{x})=C \vec{x}$.

Solution:

$$
C=B A=\left(\begin{array}{ccc}
1 & 1 & 1 \\
2 & -3 & 1
\end{array}\right)\left(\begin{array}{ccc}
3 & -2 & 1 \\
1 & 1 & 1 \\
2 & 1 & -2
\end{array}\right)=\left(\begin{array}{ccc}
6 & 0 & 0 \\
5 & -6 & -3
\end{array}\right)
$$

5. (15pts) Let A be a matrix which is row equivalent to

$$
U=\left(\begin{array}{cccc}
1 & 1 & 0 & -2 \\
0 & 0 & 1 & -3 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

(i) Is the equation $A \vec{x}=\vec{b}$ consistent for every $\vec{b} \in \mathbb{R}^{3}$?

Solution: No.
Since there is a row of zeroes after row reduction of A we can pick a vector \vec{b} so that there is a pivot in the last colum of the augmented matrix.
(ii) Suppose that $\vec{x}=(1,-1,2,0)$ is a solution to $A \vec{x}=\vec{b}$, where $\vec{b}=(1,2,3)$. What is the general solution to $A \vec{x}=\vec{b}$?

Solution: We solve the homogeneous by back substitution. a and c are basic variables, b and d are free.

$$
c-3 d=0 \quad \text { so that } \quad c=3 d .
$$

Then

$$
a+b-2 d=0 \quad \text { so that } \quad a=-b+2 d .
$$

The general solution is $(a, b, c, d)=(1,-1,2,0)+(-b+2 d, b, 3 d, d)=(1,-1,2,0)+b(-1,1,0,0)+d(2,0,3,1)$.
(iii) Find a basis for the row space of A.

Solution: $(1,1,0,-2)$ and ($0,0,1,-3)$.
6. (10pts) Is there a linear transformation $f: \mathbb{R}^{2} \longrightarrow \mathbb{R}^{2}$ such that $f(1,1)=(0,0), f(1,-2)=(1,1)$ and $f(0,1)=(1,-1)$? If so, give an example of such an f; if not, explain why not.

Solution:

No.
Let A be the matrix associated to f. Since $f(1,1)=(0,0), A$ has a non-trivial null space. So the nullity of A is at least one. The vectors $(1,1)$ and $(1,-1)$ are in the image of f. These are independent, so the column space of A contains a plane. Thus the rank of f is at least two. But the rank plus the nullity is two.
7. (10pts) Let P_{2} be the vector space of all polynomials of degree at most 2,

$$
P_{2}=\left\{a_{0}+a_{1} t+a_{2} t^{2} \mid a_{0}, a_{1}, a_{2} \in \mathbb{R}\right\}
$$

Write $5 t^{2}-2 t-3$ as a linear combination of $1-t$ and $1-t^{2}$.

Solution: Suppose that $5 t^{2}-2 t-3=a(1-t)+b\left(1-t^{2}\right)$. Then

$$
(a+b)-a t-b t^{2}=5 t^{2}-2 t-3
$$

Comparing coefficients we must have:

$$
a+b=-3 \quad a=2 \quad \text { and } \quad b=-5 .
$$

So $a=2$ and $b=-5$. Thus

$$
5 t^{2}-2 t-3=2(1-t)-5\left(1-t^{2}\right)
$$

8. (15pts) What is the determinant of

$$
A=\left(\begin{array}{cccc}
1 & 2 & -1 & 1 \\
0 & -1 & 1 & 2 \\
0 & 0 & 1 & 3 \\
1 & 3 & 4 & 0
\end{array}\right) ?
$$

Is A invertible?

Solution:

$$
\begin{aligned}
\left|\begin{array}{cccc}
1 & 2 & -1 & 1 \\
0 & -1 & 1 & 2 \\
0 & 0 & 1 & 3 \\
1 & 3 & 4 & 0
\end{array}\right| & =\left|\begin{array}{cccc}
1 & 0 & 0 & 1 \\
2 & -1 & 0 & 3 \\
-1 & 1 & 1 & 4 \\
1 & 2 & 3 & 0
\end{array}\right| \\
& =\left|\begin{array}{ccc}
-1 & 0 & 3 \\
1 & 1 & 4 \\
2 & 3 & 0
\end{array}\right|-\left|\begin{array}{ccc}
2 & -1 & 0 \\
-1 & 1 & 1 \\
1 & 2 & 3
\end{array}\right| \\
& =-\left|\begin{array}{ll}
1 & 4 \\
3 & 0
\end{array}\right|+3\left|\begin{array}{cc}
1 & 1 \\
2 & 3
\end{array}\right|-2\left|\begin{array}{cc}
1 & 1 \\
2 & 3
\end{array}\right|-\left|\begin{array}{cc}
-1 & 1 \\
1 & 3
\end{array}\right| \\
& =-\left|\begin{array}{ll}
1 & 4 \\
3 & 0
\end{array}\right|+\left|\begin{array}{cc}
1 & 1 \\
2 & 3
\end{array}\right|-\left|\begin{array}{cc}
-1 & 1 \\
1 & 3
\end{array}\right| \\
& =12+1+4 \\
& =17 .
\end{aligned}
$$

A is invertible as the determinant is non-zero.
9. (10pts) Find the inverse of

$$
A=\left(\begin{array}{lll}
1 & 0 & 1 \\
1 & 0 & 2 \\
0 & 1 & 1
\end{array}\right)
$$

Solution: We apply Gauss-Jordan elimination to the super augmented matrix:
$\left(\begin{array}{lll|lll}1 & 0 & 1 & 1 & 0 & 0 \\ 1 & 0 & 2 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 & 0 & 1\end{array}\right) \rightarrow\left(\begin{array}{ccc|ccc}1 & 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & -1 & 1 & 0 \\ 0 & 1 & 1 & 0 & 0 & 1\end{array}\right) \rightarrow\left(\begin{array}{ccc|ccc}1 & 0 & 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & -1 & 1 & 0\end{array}\right)$
so that

$$
\rightarrow\left(\begin{array}{ccc|ccc}
1 & 0 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 1 \\
0 & 0 & 1 & -1 & 1 & 0
\end{array}\right)
$$

The inverse matrix is

$$
\left(\begin{array}{ccc}
2 & -1 & 0 \\
1 & -1 & 1 \\
-1 & 1 & 0
\end{array}\right)
$$

10. (20pts) (i) Check that the vectors $\vec{v}_{1}=(1,1,-1), \vec{v}_{2}=(0,1,1)$ and $\vec{v}_{3}=(2,-1,1)$ are an orthogonal basis of \mathbb{R}^{3}.

Solution: $\vec{v}_{1} \cdot \vec{v}_{2}=(1,1,-1) \cdot(0,1,1)=0, \vec{v}_{1} \cdot \vec{v}_{3}=(1,1,-1) \cdot(2,-1,1)=$ 0 , and $\vec{v}_{2} \cdot \vec{v}_{3}=(0,1,1) \cdot(2,-1,1)=0$. They are orthogonal and so they are independent. Hence they are a basis.
(ii) Let $\vec{v}=(5,2,-2)$. Compute $\vec{v}_{1} \cdot \vec{v}, \vec{v}_{2} \cdot \vec{v}$ and $\vec{v}_{3} \cdot \vec{v}$.

Solution: $\vec{v}_{1} \cdot \vec{v}=(5,2,-2) \cdot(1,1,-1)=9, \vec{v}_{2} \cdot \vec{v}=(5,2,-2) \cdot(0,1,1)=0$ and $\vec{v}_{3} \cdot \vec{v}=(5,2,-2) \cdot(2,-1,1)=6$.
(iii) Compute $\vec{v}_{1} \cdot \vec{v}_{1}, \vec{v}_{2} \cdot \vec{v}_{2}$ and $\vec{v}_{3} \cdot \vec{v}_{3}$.

Solution: $\vec{v}_{1} \cdot \vec{v}_{1}=(1,1,-1) \cdot(1,1,-1)=3, \vec{v}_{2} \cdot \vec{v}_{2}=(0,1,1) \cdot(0,1,1)=2$ and $\vec{v}_{3} \cdot \vec{v}_{3}=(2,-1,1) \cdot(2,-1,1)=6$.
(iv) Write \vec{v} as a linear combination of \vec{v}_{1}, \vec{v}_{2} and \vec{v}_{3}.

Solution:

$$
\vec{v}=3 \vec{v}_{1}+\vec{v}_{3} .
$$

11. (10pts) Let W be the span of $\vec{v}_{1}=(1,0,1,1), \vec{v}_{2}=(0,-1,1,1)$ and $\vec{v}_{3}=(2,1,-2,3)$. Find an orthogonal basis of W.

Solution: We apply Gram-Schmidt:

$$
\vec{u}_{1}=\vec{v}_{1} .
$$

Then

$$
\vec{u}_{2}=\vec{v}_{2}-\alpha \vec{u}_{1} \quad \text { where } \quad\left(\vec{v}_{2}-\alpha \vec{u}_{1}\right) \cdot \vec{u}_{1}=0 .
$$

Therefore

$$
\alpha=\frac{\vec{v}_{2} \cdot \vec{u}_{1}}{\vec{u}_{1} \cdot \vec{u}_{1}}=\frac{2}{3} .
$$

Thus

$$
\vec{u}_{2}=(0,-1,1,1)-\frac{2}{3}(1,0,1,1)=\frac{1}{3}(-2,-3,1,1) .
$$

Let's replace \vec{u}_{2} by $(-2,-3,1,1)$. This is still orthogonal to \vec{u}_{1}. Then

$$
\vec{u}_{3}=\vec{v}_{3}-\beta \vec{u}_{1}-\gamma \vec{u}_{2} \quad \text { where } \quad\left(\vec{v}_{3}-\beta \vec{u}_{1}-\gamma \vec{u}_{2}\right) \cdot \vec{u}_{i}=0 .
$$

Therefore
$\beta=\frac{\vec{v}_{3} \cdot \vec{u}_{1}}{\vec{u}_{1} \cdot \vec{u}_{1}}=\frac{3}{3}=1 \quad$ and $\quad \gamma=\frac{\vec{v}_{3} \cdot \vec{u}_{2}}{\vec{u}_{2} \cdot \vec{u}_{2}}=\frac{-4-3-2+3}{15}=-\frac{2}{5}$.
Thus

$$
\vec{u}_{3}=(2,1,-2,3)-(1,0,1,1)+\frac{2}{5}(-2,-3,1,1)=\frac{1}{5}(1,-1,-13,12) .
$$

Hence

$$
(1,0,1,1), \quad(-2,-3,1,1) \quad \text { and } \quad(1,-1,-13,12) \text {, }
$$

is an orthogonal basis.
12. (10pts) Find the least squares solution to $A \vec{x}=\vec{b}$, where

$$
A=\left(\begin{array}{cc}
-1 & 1 \\
1 & 1 \\
2 & 1
\end{array}\right) \quad \text { and } \quad \vec{b}=\left(\begin{array}{l}
1 \\
2 \\
6
\end{array}\right)
$$

Solution: We have to solve $\left(A^{T} A\right) \vec{x}=A^{T} \vec{b}$.

$$
A^{T}=\left(\begin{array}{ccc}
-1 & 1 & 2 \\
1 & 1 & 1
\end{array}\right)
$$

So

$$
A^{T} A=\left(\begin{array}{ccc}
-1 & 1 & 2 \\
1 & 1 & 1
\end{array}\right)\left(\begin{array}{cc}
-1 & 1 \\
1 & 1 \\
2 & 1
\end{array}\right)=\left(\begin{array}{ll}
6 & 2 \\
2 & 3
\end{array}\right) \quad \text { and } \quad A^{T} \vec{b}=\left(\begin{array}{ccc}
-1 & 1 & 2 \\
1 & 1 & 1
\end{array}\right)\left(\begin{array}{c}
1 \\
2 \\
6
\end{array}\right)=\binom{13}{9}
$$

To solve $A^{T} A \vec{x}=A^{T} \vec{b}$ we apply Gaussian elimination:

$$
\left(\begin{array}{cc|c}
6 & 2 & 13 \\
2 & 3 & 9
\end{array}\right) \rightarrow\left(\begin{array}{cc|c}
1 & 1 / 3 & 13 / 6 \\
2 & 3 & 9
\end{array}\right) \rightarrow\left(\begin{array}{cc|c}
1 & 1 / 3 & 13 / 6 \\
0 & 7 / 3 & 14 / 3
\end{array}\right) \rightarrow\left(\begin{array}{cc|c}
1 & 1 / 3 & 13 / 6 \\
0 & 1 & 2
\end{array}\right)
$$

The elimination is complete. We solve by back substitution. $y=2$ and $x+2 / 3=13 / 6$ so that $x=3 / 2$. The least squares solution is $(3 / 2,2)$.
13. (10pts) Show that $\vec{v}_{1}=(1,0,-1)$ and $\vec{v}_{2}=(2,-1,-1)$ are eigenvectors of

$$
A=\left(\begin{array}{ccc}
0 & 0 & -2 \\
1 & 2 & 1 \\
1 & 0 & 3
\end{array}\right)
$$

What are the eigenvalues?
Solution:

$$
A \vec{v}_{1}=\left(\begin{array}{ccc}
0 & 0 & -2 \\
1 & 2 & 1 \\
1 & 0 & 3
\end{array}\right)\left(\begin{array}{c}
1 \\
0 \\
-1
\end{array}\right)=\left(\begin{array}{c}
2 \\
0 \\
-2
\end{array}\right)=2\left(\begin{array}{c}
1 \\
0 \\
-1
\end{array}\right)=2 \vec{v}_{1}
$$

and

$$
A \vec{v}_{2}=\left(\begin{array}{ccc}
0 & 0 & -2 \\
1 & 2 & 1 \\
1 & 0 & 3
\end{array}\right)\left(\begin{array}{c}
2 \\
-1 \\
-1
\end{array}\right)=\left(\begin{array}{c}
2 \\
-1 \\
-1
\end{array}\right)=\vec{v}_{2}
$$

Therefore \vec{v}_{1} and \vec{v}_{2} are eigenvectors with eigenvalues 2 and 1 .
14. (10pts) Let

$$
A=\left(\begin{array}{ccc}
1 & 2 & 2 \\
0 & -1 & 1 \\
0 & 0 & 2
\end{array}\right)
$$

Given that

$$
\left(\begin{array}{ccc}
1 & 2 & 2 \\
0 & -1 & 1 \\
0 & 0 & 2
\end{array}\right)\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right)=\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right) \quad\left(\begin{array}{ccc}
1 & 2 & 2 \\
0 & -1 & 1 \\
0 & 0 & 2
\end{array}\right)\left(\begin{array}{c}
-1 \\
1 \\
0
\end{array}\right)=\left(\begin{array}{c}
1 \\
-1 \\
0
\end{array}\right)
$$

and

$$
\left(\begin{array}{ccc}
1 & 2 & 2 \\
0 & -1 & 1 \\
0 & 0 & 2
\end{array}\right)\left(\begin{array}{l}
8 \\
1 \\
3
\end{array}\right)=\left(\begin{array}{c}
16 \\
2 \\
6
\end{array}\right)
$$

find a diagonal matrix D and an invertible matrix P such that $A=$ $P D P^{-1}$ (there is no need to find P^{-1}).

Solution: The given vectors are eigenvectors with eigenvalues $1,-1$ and 2 . The eigenvalues are different so that the eigenvectors are automatically independent.
Let

$$
P=\left(\begin{array}{ccc}
1 & 1 & 8 \\
0 & -1 & 1 \\
0 & 0 & 3
\end{array}\right) \quad \text { and } \quad D=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & 2
\end{array}\right)
$$

the matrix P whose columns are the eigenvectors and the diagonal matrix D whose entries are the eigenvalues. Then $A=P D P^{-1}$.
15. (10pts) Let

$$
A=\left(\begin{array}{lll}
0 & 1 & 1 \\
1 & 0 & 1 \\
1 & 1 & 0
\end{array}\right)
$$

(i) Find a basis for the eigenspace with eigenvalue -1 .

Solution: We want the null space of $A+I_{3}$:

$$
\left(\begin{array}{lll}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1
\end{array}\right) \rightarrow\left(\begin{array}{lll}
1 & 1 & 1 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)
$$

x is a basic variable, y and z are free variables. $x+y+z=0$, so that $x=-y-z$ and the general solution is

$$
(x, y, z)=(-y-z, y, z)=y(-1,1,0)+z(-1,0,1) .
$$

The eigenspace with eigenvalue -1 is the span of $(-1,1,0)$ and $(-1,0,1)$.
(ii) Does A have other eigenvalues? If so, identify them; if not, explain why not.

Solution: Yes. A is symmetric and there must be other eigenvectors. Consider expanding $\operatorname{det}\left(A-\lambda I_{3}\right)$ as a polynomial in λ. The constant term is the value of the determinant when $\lambda=0$:

$$
\left|\begin{array}{lll}
0 & 1 & 1 \\
1 & 0 & 1 \\
1 & 1 & 0
\end{array}\right|=-\left|\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right|+\left|\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right|=2
$$

But minus the constant term is the product of the eigenvalues. Thus the products of the eigenvalues is -2 . As the product of two of them is 1 the third eigenvalue is -2 .

