HWK \#2, DUE WEDNESDAY 10/15

$1.312,16,22,23,24,26$.
$1.41,10,12,13,20,24,26,32$.
$1.56,11,16,18,24,28,30$.
$1.72,10,18,20,27,28,36$.
Just for fun:
Pythagoras says that if we have a rectangle with sides a and b and diagonal c then $c^{2}=a^{2}+b^{2}$. It is a natural question to look for rectangles where the three numbers (a, b, c) are all natural numbers; for example $(3,4,5)$ and $(5,12,13)$.
So what happens for a box (aka a cuboid, aka a rectangular parallelepiped)? Suppose that that the three sides are a, b and c. There are three different face diagonals and one big diagonal, making seven lengths.
Fix one length. Show that one can find a box where all but this length is a natural number. (In the end, writing a computer program which simply runs until it finds a solution is probably the best way to solve this problem). It is an unsolved problem (aka due date ∞) whether one can find a box where all seven lengths are natural numbers.

