HWK #6, DUE WEDNESDAY NOVEMBER 12TH

4.6: 2, 6, 8, 14, 20, 22 4.4: 4, 8, 10 3.1: 4, 10, 20, 22, 24, 38 3.2: 6, 18, 22, 24, 31, 32, 40 3.3: 6, 20, 24 **Just for fun:** Let $\lambda_1, \lambda_2, \dots, \lambda_n$ be a secur

Let $\lambda_1, \lambda_2, \ldots, \lambda_n$ be a sequnce of scalars. What is the determinant of the $n \times n$ matrix A whose *i*th column are the powers of λ_i , starting at 1:

1	1	1		1	
λ_1	λ_2	λ_3		λ_n	
λ_1^2	λ_2^2	λ_3^2		$egin{array}{c} \lambda_n \ \lambda_n^2 \end{array}$?
:	:	÷	·	÷	
λ_1^{n-1}	λ_2^{n-1}	λ_2^{n-1}	• • •	λ_n^{n-1}	