HWK \#9, DUE WEDNESDAY DECEMBER 10TH

6.4: 4, 10
6.5: $4,6,8,10,14$
7.1: $8,14,19$

Just for fun:
Let A be an orthogonal matrix. Show that the determinant of A is ± 1. Let $f: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{n}$ be a linear map and let A be the associated $n \times$ n matrix. We say that f is a rotation if A is orthogonal and the determinant of A is 1 .
Show that every rotation in \mathbb{R}^{3} has an axis.

