10. Vector subspaces

The solution to a homogeneous equation $A \vec{x}=\overrightarrow{0}$ in \mathbb{R}^{3} is one of

- The origin.
- A line through the origin.
- A plane through the origin.
- The whole of \mathbb{R}^{3}.

These are all examples of linear subspaces.
Definition 10.1. Let H be a subset of \mathbb{R}^{n}.
H is called a linear subspace if
(1) $\overrightarrow{0} \in H$.
(2) H is closed under addition: If \vec{u} and $\vec{v} \in H$ then $\vec{u}+\vec{v} \in H$.
(3) H is closed under scalar multiplication: If \vec{u} and λ is a scalar then $\lambda \vec{u} \in H$.

Geometrically H is closed under scalar multiplication if and only if H is a union of lines through the origin. H is then closed under addition if and only if it contains every plane containing ever pair of lines.

Example 10.2. Let $H=\{\overrightarrow{0}\}$. Then H is a linear subspace. Indeed, $\overrightarrow{0} \in H . \overrightarrow{0}+\overrightarrow{0}=\overrightarrow{0} \in H$. Similarly $\lambda \overrightarrow{0}=\overrightarrow{0}$.

Example 10.3. Let $H=\mathbb{R}^{n}$. Then H is a linear subspace. Indeed, $\overrightarrow{0} \in H . H$ is obviously closed under addition and scalar multiplication.

Now consider lines in \mathbb{R}^{3}.
Example 10.4. Let H be the x-axis. Then H is a linear subspace. Indeed, $\overrightarrow{0} \in H$. If \vec{u} and \vec{v} belong to H then \vec{u} and \vec{v} are multiples of $(1,0,0)$ and the sum is a multiple of $(1,0,0)$. Similarly if λ is a scalar then $\lambda \vec{u}$ is a multiple of $(1,0,0)$.

Example 10.5. Let H be a line in \mathbb{R}^{3} through the origin. Then H is a linear subspace. Indeed, $\overrightarrow{0} \in H$. The elements of H are all multiples of the same vector \vec{w}. If \vec{u} and \vec{v} are in H then \vec{u} and \vec{v} are multiples of \vec{w}. The sum is a multiple of \vec{w}. Thus $\vec{u}+\vec{v} \in H$. Similarly if λ is a scalar then $\lambda \vec{u}$ is a multiple of \vec{w}.

It is interesting to see what happens when we don't have a linear subspace:

Example 10.6. Let

$$
H=\left\{(x, y) \mid \underset{1}{y}=x^{2}\right\} \subset \mathbb{R}^{2}
$$

a parabola, the graph of $y=x^{2}$. This does contain the origin. Consider the vector $(1,1) \in H$ and the vector $(2,4) \in H$. The sum is

$$
(1,1)+(2,4)=(3,5) \notin H
$$

Similarly $(1,1) \in H$ but $2(1,1)=(2,2) \notin H$.
H is neither closed under addition nor under scalar multiplication. H is not a linear subspace.

Theorem 10.7. Let $v_{1}, v_{2}, \ldots, v_{p}$ be vectors in \mathbb{R}^{n} and let

$$
H=\operatorname{span}\left\{\vec{u} \mid \vec{u} \text { is a linear combination of } v_{1}, v_{2}, \ldots, v_{p}\right\}
$$

be the span.
Then H is a linear subspace of \mathbb{R}^{n}.
Proof. $\overrightarrow{0} \in H$, since $\overrightarrow{0}$ is a linear combination of $v_{1}, v_{2}, \ldots, v_{p}$ (use zero weights). If \vec{u} and \vec{v} belong to H then \vec{u} and \vec{v} are linear combinations of $\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{p}$. Suppose that
$\vec{u}=x_{1} \vec{v}_{1}+x_{2} \vec{x}_{2}+\cdots+x_{p} \vec{x}_{p} \quad$ and $\quad \vec{v}=y_{1} \vec{v}_{1}+y_{2} \vec{x}_{2}+\cdots+y_{p} \vec{x}_{p}$, for scalars $x_{1}, x_{2}, \ldots, x_{p}$ and $y_{1}, y_{2}, \ldots, y_{p}$. Then

$$
\vec{u}+\vec{v}=\left(x_{1}+y_{1}\right) \vec{v}_{1}+\left(x_{2}+y_{2}\right) \vec{x}_{2}+\ldots\left(x_{p}+y_{p}\right) \vec{x}_{p}
$$

is a linear combination of $\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{p}$ so that $\vec{u}+\vec{v} \in H$. So H is closed under addition. If λ is a scalar then

$$
\lambda \vec{u}=\left(\lambda x_{1}\right) \vec{v}_{1}+\left(\lambda x_{2}\right) \vec{x}_{2}+\ldots\left(\lambda x_{p}\right) \vec{x}_{p} .
$$

So H is closed under scalar multiplication. Thus H is a linear subspace.

If we are given a matrix A the span of the columns $\vec{a}_{1}, \vec{a}_{2}, \ldots, \vec{a}_{n}$ of A is called the column space of $A, \operatorname{col}(A)$.

There is one other way to produce lots of linear subspaces:
Definition-Theorem 10.8. Let A be a matrix. The solutions to the homogeneous equation $A \vec{x}=\overrightarrow{0}$ is a linear subspace H, called the nullspace of A, $\operatorname{null}(A)$.
Proof. $\overrightarrow{0} \in H=\operatorname{null}(A)$. If \vec{u} and $\vec{v} \in H=\operatorname{null}(A)$ then

$$
A \vec{u}=\overrightarrow{0} \quad \text { and } \quad A \vec{v}=\overrightarrow{0}
$$

But then

$$
A(\vec{u}+\vec{v})=A \vec{u}+A \vec{v}=\overrightarrow{0}+\overrightarrow{0}=\overrightarrow{0} .
$$

Thus $\vec{u}+\vec{v} \in \operatorname{null}(A)$ and $\operatorname{null}(A)$ is closed under addition. Similarly if λ is a scalar then

$$
A(\lambda \vec{u})=\lambda(A \vec{u})=\lambda \overrightarrow{0}=\overrightarrow{0} .
$$

Thus $\lambda \vec{u} \in \operatorname{null}(A)$ and $\operatorname{null}(A)$ is closed under scalar multiplication.
Thus $\operatorname{null}(A)$ is a linear subspace.
Example 10.9. Let H be the plane $2 x-4 y+7 z=0$ in \mathbb{R}^{3}.
Then H is a linear subspace of \mathbb{R}^{3}. Indeed, let

$$
A=\left(\begin{array}{lll}
2 & -4 & 7
\end{array}\right) .
$$

Then $H=\operatorname{null}(A)$ is the nullspace of A.
Example 10.10. Let H be the first quadrant in \mathbb{R}^{2},

$$
H=\{(x, y) \mid x \geq 0 \text { and } y \geq 0\}
$$

Then H doesn't look like a linear subspace. Let's check that it isn't. $0 \in H$ and in fact H is closed under addition. If $\vec{u}=(a, b)$ and $\vec{v}=(c, d)$ then

$$
\vec{u}+\vec{v}=(a+b, c+d) .
$$

$a+b \geq 0$ and $c+d \geq 0$ so that $\vec{u}+\vec{v} \in H$.
Suppose we take $\lambda=2$. Then

$$
\lambda \vec{u}=2(a, b)=(2 a, 2 b) .
$$

But suppose that we take $\vec{u}=(1,0)$ and $\lambda=-1$. Then

$$
\lambda \vec{u}=-1(1,0)=(-1,0) \notin H .
$$

So H is not closed under scalar multiplication. H is not a linear subspace.

Consider polynomials of degree at most 2 in the variable t. For example

$$
f(t)=3-4 t+6 t^{2} \quad \text { or } \quad g(t)=3-5 t .
$$

The general polynomial of degree at most two looks like

$$
p(t)=a_{0}+a_{1}+a_{2} t^{2} .
$$

Note that we can add polynomials,

$$
f(t)+g(t)=\left(3-4 t+6 t^{2}\right)+(3-5 t)=6-9 t+6 t^{2}
$$

and multiply them by a scalar

$$
3 f(t)=3\left(3-4 t+6 t^{2}\right)=6-12 t+18 t^{2}
$$

There is even a zero polynomial.

$$
q(t)=0
$$

All of the basic rules of algebra which apply to vectors apply to polynomials. For example if we add the zero polynomial to another polynomial nothing happens.
P_{n} denotes the set of polynomials of degree at most n in the variable t. We think of P_{n} as being an abstract vector space, in which case we will call the elements of P_{n} vectors.
Definition 10.11. Let $f: V \longrightarrow W$ be a function between vector spaces. We say that f is linear if
(1) It is additive: $f(\vec{v}+\vec{w})=f(\vec{v})+f(\vec{w})$ for all vectors \vec{v} and $\vec{w} \in \mathbb{R}^{n}$.
(2) $f(\lambda \vec{v})=\lambda f(\vec{v})$, for all scalars λ and vectors $\vec{v} \in \mathbb{R}^{n}$.

Example 10.12. Let

$$
f: P_{n} \longrightarrow P_{n-1} \quad \text { given by } \quad f(p(t))=\frac{d p(t)}{d t}
$$

by the function which associates to a polynomial of degree n the derivative.

The fact that f is linear follows from basic rules of differentiation:

$$
\frac{d(p(t)+q(t))}{d t}=\frac{d p(t)}{d t}+\frac{d q(t)}{d t} \quad \text { and } \quad \frac{d}{d t}(\lambda p(t))=\lambda \frac{d p(t)}{d t} .
$$

The derivative of a sum is the sum of the derivatives; the derivative of a scalar multiple is the scalar multiples of the derivative.

