10. Vector subspaces

The solution to a homogeneous equation $A\vec{x} = \vec{0}$ in \mathbb{R}^3 is one of

- The origin.
- A line through the origin.
- A plane through the origin.
- The whole of \mathbb{R}^3 .

These are all examples of linear subspaces.

Definition 10.1. Let H be a subset of \mathbb{R}^n .

H is called a linear subspace if

- (1) $\vec{0} \in H$.
- (2) *H* is closed under addition: If \vec{u} and $\vec{v} \in H$ then $\vec{u} + \vec{v} \in H$.
- (3) *H* is closed under scalar multiplication: If \vec{u} and λ is a scalar then $\lambda \vec{u} \in H$.

Geometrically H is closed under scalar multiplication if and only if H is a union of lines through the origin. H is then closed under addition if and only if it contains every plane containing ever pair of lines.

Example 10.2. Let $H = \{\vec{0}\}$. Then H is a linear subspace. Indeed, $\vec{0} \in H$. $\vec{0} + \vec{0} = \vec{0} \in H$. Similarly $\lambda \vec{0} = \vec{0}$.

Example 10.3. Let $H = \mathbb{R}^n$. Then H is a linear subspace. Indeed, $\vec{0} \in H$. H is obviously closed under addition and scalar multiplication.

Now consider lines in \mathbb{R}^3 .

Example 10.4. Let H be the x-axis. Then H is a linear subspace. Indeed, $\vec{0} \in H$. If \vec{u} and \vec{v} belong to H then \vec{u} and \vec{v} are multiples of (1,0,0) and the sum is a multiple of (1,0,0). Similarly if λ is a scalar then $\lambda \vec{u}$ is a multiple of (1,0,0).

Example 10.5. Let H be a line in \mathbb{R}^3 through the origin. Then H is a linear subspace. Indeed, $\vec{0} \in H$. The elements of H are all multiples of the same vector \vec{w} . If \vec{u} and \vec{v} are in H then \vec{u} and \vec{v} are multiples of \vec{w} . The sum is a multiple of \vec{w} . Thus $\vec{u} + \vec{v} \in H$. Similarly if λ is a scalar then $\lambda \vec{u}$ is a multiple of \vec{w} .

It is interesting to see what happens when we don't have a linear subspace:

Example 10.6. Let

$$H = \{ (x, y) | y = x^2 \} \subset \mathbb{R}^2,$$

a parabola, the graph of $y = x^2$. This does contain the origin. Consider the vector $(1,1) \in H$ and the vector $(2,4) \in H$. The sum is

$$(1,1) + (2,4) = (3,5) \notin H.$$

Similarly $(1,1) \in H$ but $2(1,1) = (2,2) \notin H$.

H is neither closed under addition nor under scalar multiplication. *H* is not a linear subspace.

Theorem 10.7. Let v_1, v_2, \ldots, v_p be vectors in \mathbb{R}^n and let

 $H = \operatorname{span} \{ \vec{u} \mid \vec{u} \text{ is a linear combination of } v_1, v_2, \dots, v_p \}$

be the span.

Then H is a linear subspace of \mathbb{R}^n .

Proof. $\vec{0} \in H$, since $\vec{0}$ is a linear combination of v_1, v_2, \ldots, v_p (use zero weights). If \vec{u} and \vec{v} belong to H then \vec{u} and \vec{v} are linear combinations of $\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_p$. Suppose that

$$\vec{u} = x_1 \vec{v}_1 + x_2 \vec{x}_2 + \dots + x_p \vec{x}_p$$
 and $\vec{v} = y_1 \vec{v}_1 + y_2 \vec{x}_2 + \dots + y_p \vec{x}_p$,
for scalars x_1, x_2, \dots, x_p and y_1, y_2, \dots, y_p . Then

$$\vec{u} + \vec{v} = (x_1 + y_1)\vec{v}_1 + (x_2 + y_2)\vec{x}_2 + \dots (x_p + y_p)\vec{x}_p$$

is a linear combination of $\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_p$ so that $\vec{u} + \vec{v} \in H$. So H is closed under addition. If λ is a scalar then

$$\lambda \vec{u} = (\lambda x_1)\vec{v}_1 + (\lambda x_2)\vec{x}_2 + \dots (\lambda x_p)\vec{x}_p.$$

So H is closed under scalar multiplication. Thus H is a linear subspace.

If we are given a matrix A the span of the columns $\vec{a}_1, \vec{a}_2, \ldots, \vec{a}_n$ of A is called the column space of A, col(A).

There is one other way to produce lots of linear subspaces:

Definition-Theorem 10.8. Let A be a matrix. The solutions to the homogeneous equation $A\vec{x} = \vec{0}$ is a linear subspace H, called the *nullspace* of A, null(A).

Proof.
$$\vec{0} \in H = \text{null}(A)$$
. If \vec{u} and $\vec{v} \in H = \text{null}(A)$ then
 $A\vec{u} = \vec{0}$ and $A\vec{v} = \vec{0}$.

But then

$$A(\vec{u} + \vec{v}) = A\vec{u} + A\vec{v} = \vec{0} + \vec{0} = \vec{0}.$$

Thus $\vec{u} + \vec{v} \in \text{null}(A)$ and null(A) is closed under addition. Similarly if λ is a scalar then

$$A(\lambda \vec{u}) = \lambda (A\vec{u}) = \lambda \vec{0} = \vec{0}.$$

Thus $\lambda \vec{u} \in \text{null}(A)$ and null(A) is closed under scalar multiplication. Thus null(A) is a linear subspace.

Example 10.9. Let H be the plane 2x - 4y + 7z = 0 in \mathbb{R}^3 . Then H is a linear subspace of \mathbb{R}^3 . Indeed, let

$$A = \begin{pmatrix} 2 & -4 & 7 \end{pmatrix}$$
.

Then $H = \operatorname{null}(A)$ is the nullspace of A.

Example 10.10. Let H be the first quadrant in \mathbb{R}^2 ,

$$H = \{ (x, y) \mid x \ge 0 \text{ and } y \ge 0 \}.$$

Then H doesn't look like a linear subspace. Let's check that it isn't. $0 \in H$ and in fact H is closed under addition. If $\vec{u} = (a, b)$ and $\vec{v} = (c, d)$ then

$$\vec{u} + \vec{v} = (a+b, c+d).$$

 $a+b \ge 0$ and $c+d \ge 0$ so that $\vec{u} + \vec{v} \in H$.

Suppose we take $\lambda = 2$. Then

$$\lambda \vec{u} = 2(a, b) = (2a, 2b).$$

But suppose that we take $\vec{u} = (1, 0)$ and $\lambda = -1$. Then

$$\lambda \vec{u} = -1(1,0) = (-1,0) \notin H.$$

So H is not closed under scalar multiplication. H is not a linear subspace.

Consider polynomials of degree at most 2 in the variable t. For example

$$f(t) = 3 - 4t + 6t^2$$
 or $g(t) = 3 - 5t$.

The general polynomial of degree at most two looks like

$$p(t) = a_0 + a_1 + a_2 t^2$$

Note that we can add polynomials,

$$f(t) + g(t) = (3 - 4t + 6t^2) + (3 - 5t) = 6 - 9t + 6t^2$$

and multiply them by a scalar

$$3f(t) = 3(3 - 4t + 6t^2) = 6 - 12t + 18t^2.$$

There is even a zero polynomial.

$$q(t) = 0.$$

All of the basic rules of algebra which apply to vectors apply to polynomials. For example if we add the zero polynomial to another polynomial nothing happens. P_n denotes the set of polynomials of degree at most n in the variable t. We think of P_n as being an abstract vector space, in which case we will call the elements of P_n vectors.

Definition 10.11. Let $f: V \longrightarrow W$ be a function between vector spaces. We say that f is linear if

- (1) It is additive: $f(\vec{v} + \vec{w}) = f(\vec{v}) + f(\vec{w})$ for all vectors \vec{v} and $\vec{w} \in \mathbb{R}^n$.
- (2) $f(\lambda \vec{v}) = \lambda f(\vec{v})$, for all scalars λ and vectors $\vec{v} \in \mathbb{R}^n$.

Example 10.12. Let

$$f: P_n \longrightarrow P_{n-1}$$
 given by $f(p(t)) = \frac{dp(t)}{dt}$

by the function which associates to a polynomial of degree n the derivative.

The fact that f is linear follows from basic rules of differentiation:

$$\frac{d(p(t) + q(t))}{dt} = \frac{dp(t)}{dt} + \frac{dq(t)}{dt} \quad and \quad \frac{d}{dt}(\lambda p(t)) = \lambda \frac{dp(t)}{dt}.$$

The derivative of a sum is the sum of the derivatives; the derivative of a scalar multiple is the scalar multiples of the derivative.