11. 1ST MIDTERM REVIEW

Let A be an $m \times n$ matrix. There are two ways to view matrix multiplication. The first focuses on the rows of A. This is the usual way to compute and is the way that equations arise:

$$
\left(\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right)\binom{x}{y}=\binom{x+2 y}{3 x+4 y} .
$$

But there is another way to view matrix multiplication, focusing on the columns of A. This way we get linear combinations of the columns of A :

$$
\left(\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right)\binom{x}{y}=x\binom{1}{3}+y\binom{2}{4} .
$$

Example 11.1. What is the matrix associated to the linear function
$f\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=\left(x_{1}+2 x_{2}+3 x_{3}-x_{4},-x_{1}-3 x_{2}-x_{3}, 3 x_{1}+4 x_{2}+14 x_{3}\right) ?$
This functions takes as input a vector with 4 entries and spits out a vector with 3 entries,

$$
f: \mathbb{R}^{4} \longrightarrow \mathbb{R}^{3}
$$

So we are looking for a matrix A with shape 3×4. We just need to calculate the images of the four vectors $\vec{e}_{1}, \vec{e}_{2}, \vec{e}_{3}$ and \vec{e}_{4} :

$$
\begin{aligned}
& f(1,0,0,0)=(1,-1,3) \\
& f(0,1,0,0)=(2,-3,4) \\
& f(0,0,1,0)=(3,-1,14) \\
& f(0,0,0,1)=(-1,0,0) .
\end{aligned}
$$

So

$$
A=\left(\begin{array}{cccc}
1 & 2 & 3 & -1 \\
-1 & -3 & -1 & 0 \\
3 & 4 & 14 & 0
\end{array}\right)
$$

Example 11.2. Is the function f one-to-one?
We are asking if the matrix equation

$$
A \vec{x}=\vec{b}
$$

always has at most one solution. This is the same as to ask if the matrix equation:

$$
A \vec{x}=\overrightarrow{0}
$$

has only the obvious (aka trivial) solution $\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=(0,0,0,0)$.

We apply Gaussian elimination. We multiply the first row by 1 and -3 and add it to the second and third rows:

$$
\left(\begin{array}{cccc}
1 & 2 & 3 & -1 \\
-1 & -3 & -1 & 0 \\
3 & 4 & 14 & 0
\end{array}\right) \rightarrow\left(\begin{array}{cccc}
1 & 2 & 3 & -1 \\
0 & -1 & 2 & -1 \\
0 & -2 & 5 & 3
\end{array}\right) \rightarrow\left(\begin{array}{cccc}
1 & 2 & 3 & -1 \\
0 & 1 & -2 & 1 \\
0 & -2 & 5 & 3
\end{array}\right)
$$

To get from the second matrix to the third matrix we multiplied by the second row by -1 . Now we multiply the second row by 2 and add it to the third row:

$$
\left(\begin{array}{cccc}
1 & 2 & 3 & -1 \\
0 & 1 & -2 & 1 \\
0 & -2 & 5 & 3
\end{array}\right) \rightarrow\left(\begin{array}{cccc}
1 & 2 & 3 & -1 \\
0 & 1 & -2 & 1 \\
0 & 0 & 1 & 5
\end{array}\right)
$$

Now imagine solving these equations by back substitution. x_{1}, x_{2} and x_{3} are basic variables, so that what is left, x_{4} is a free variable. But this means that the homogeneous equation $A \vec{x}=\overrightarrow{0}$ has a non-obvious solution.

If we carry out back substitution we get:

$$
x_{3}+5 x_{4}=0 \quad \text { so that } \quad x_{3}=-5 x_{4}
$$

Using this we get:

$$
x_{2}+10 x_{4}+x_{4}=0 \quad \text { so that } \quad x_{2}=-11 x_{4}
$$

Finally we get:

$$
x_{1}-22 x_{4}-15 x_{4}-x_{4}=0 \quad \text { so that } \quad x_{2}=38 x_{4} .
$$

So the general solution to the homogeneous is:

$$
\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=\left(38 x_{4},-11 x_{4},-5 x_{4}, x_{4}\right)=x_{4}(38,-11,-5,1),
$$

a line through the origin in \mathbb{R}^{4}.
Example 11.3. Are the vectors $(1,-1,3),(2,-3,4),(3,-1,-14)$ and $(-1,0,0)$ independent?

We are asking if we can find $x_{1}, x_{2}, x_{3}, x_{4}$, not all zero, so that

$$
x_{1}\left(\begin{array}{c}
1 \\
-1 \\
3
\end{array}\right)+x_{2}\left(\begin{array}{c}
2 \\
-3 \\
4
\end{array}\right)+x_{3}\left(\begin{array}{c}
3 \\
-1 \\
-14
\end{array}\right)+x_{4}\left(\begin{array}{c}
-1 \\
0 \\
0
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right) .
$$

Let A be the matrix whose columns are the vectors $(1,-1,3),(2,-3,4)$, $(3,-1,-14)$ and $(-1,0,0)$. We are asking if we can find a non-obvious solution to

$$
A \vec{x}=\overrightarrow{0} .
$$

We have already seen we can. The question whether the vectors are independent is the same as whether the function is one-to-one.

Example 11.4. Do the vectors $(1,-1,3),(2,-3,4),(3,-1,-14)$ and $(-1,0,0)$ span \mathbb{R}^{3} ?

Given a vector $\vec{b} \in \mathbb{R}^{3}$ we are asking if we can find x_{1}, x_{2}, x_{3} and x_{4} such that

$$
x_{1}\left(\begin{array}{c}
1 \\
-1 \\
3
\end{array}\right)+x_{2}\left(\begin{array}{c}
2 \\
-3 \\
4
\end{array}\right)+x_{3}\left(\begin{array}{c}
3 \\
-1 \\
-14
\end{array}\right)+x_{4}\left(\begin{array}{c}
-1 \\
0 \\
0
\end{array}\right)=\left(\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right) .
$$

Equivalently can we always solve

$$
A \vec{x}=\vec{b} ?
$$

Is this equation always consistent?
Apply Gaussian elimination. We never get a pivot in the last column of the augmented matrix. So the equation is always consistent.
Example 11.5. Is $\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=(1,1,1,1)$ a solution to

$$
\begin{aligned}
x_{1}+2 x_{2}+3 x_{3}-x_{4} & =5 \\
-x_{1}-3 x_{2}-x_{3} & =-5 \\
3 x_{1}+4 x_{2}+14 x_{3} & =21 ?
\end{aligned}
$$

What is the general solution?
We check:

$$
\begin{aligned}
1+2+3-1 & =5 \\
-1-3-1 & =-5 \\
3+4+14 & =21
\end{aligned}
$$

So ($1,1,1,1$) a solution.
The general solution is a particular solution plus the general solution to the homogeneous.

$$
\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=(1,1,1,1)+x_{4}(38,-11,-5,1)
$$

This is a translation of a line through the origin.
Example 11.6. What is the inverse of the matrix

$$
A=\left(\begin{array}{ccc}
1 & 0 & -2 \\
-3 & 1 & 4 \\
2 & -3 & 4
\end{array}\right) ?
$$

We apply Gauss-Jordan elimination. We multiply the first row by 3 and -2 and add it to the second and third rows.

$$
\left(\begin{array}{ccc|ccc}
1 & 0 & -2 & 1 & 0 & 0 \\
-3 & 1 & 4 & 0 & 1 & 0 \\
2 & -3 & 4 & 0 & 0 & 1
\end{array}\right) \rightarrow\left(\begin{array}{ccc|ccc}
1 & 0 & -2 & 1 & 0 & 0 \\
0 & 1 & -2 & 3 & 1 & 0 \\
0 & -3 & 8 & -2 & 0 & 1
\end{array}\right) \rightarrow\left(\begin{array}{ccc|ccc}
1 & 0 & -2 & 1 & 0 & 0 \\
0 & 1 & -2 & 3 & 1 & 0 \\
0 & 0 & 2 & 7 & 3 & 1
\end{array}\right)
$$

To get from the second matrix to the third we multiplied the second row by 3 and added it to the third row. Next we divide the third row by 2 :

$$
\rightarrow\left(\begin{array}{ccc|ccc}
1 & 0 & -2 & 1 & 0 & 0 \\
0 & 1 & -2 & 3 & 1 & 0 \\
0 & 0 & 1 & 7 / 2 & 3 / 2 & 1 / 2
\end{array}\right) \rightarrow\left(\begin{array}{ccc|ccc}
1 & 0 & 0 & 8 & 3 & 1 \\
0 & 1 & 0 & 10 & 4 & 1 \\
0 & 0 & 1 & 7 / 2 & 3 / 2 & 1 / 2
\end{array}\right)
$$

For the last step, we multiplied the third row by 2 and added it to the second and first rows.

To check that

$$
C=\left(\begin{array}{ccc}
8 & 3 & 1 \\
10 & 4 & 1 \\
7 / 2 & 3 / 2 & 1 / 2
\end{array}\right)
$$

let's compute a few entries of the product $A C$ and $C A$:
If we take the first row of A and multiply by the first column of C we get

$$
1 \cdot 8+0 \cdot 10+(-2) \cdot 7 / 2=1
$$

as expected.
If take the second row of C and multiply it by the third column of A we get

$$
10 \cdot-2+4 \cdot 4+1 \cdot 4=0
$$

as expected.

