## 12. BASIS AND DIMENSION

Recall two definitions:
Definition 12.1. The vectors $\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{n} \in \mathbb{R}^{m}$ are (linearly) dependent if there are scalars $x_{1}, x_{2}, \ldots, x_{m}$, not all zero, such that

$$
x_{1} \vec{v}_{1}+x_{2} \vec{v}_{2}+\cdots+x_{n} \vec{v}_{n}=\overrightarrow{0} .
$$

We say that the vectors are (linearly) independent if they are not dependent.

Linear independence places a restriction on the number $n$ of vectors $\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{n}$. If the vectors $\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{n} \in \mathbb{R}^{m}$ are independent then $n \leq m$. You cannot have too many independent vectors.

At the other extreme we have:
Definition 12.2. We say that the vectors $\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{n} \in \mathbb{R}^{m}$ spans $\mathbb{R}^{m}$ if every vector $\vec{b} \in \mathbb{R}^{m}$ is a linear combination of $\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{n}$.

Vectors which span places a restriction on the number $n$ of vectors $\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{n}$. If the vectors $\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{n} \in \mathbb{R}^{m}$ span $\mathbb{R}^{m}$ then $n \geq m$. You cannot have too few vectors which span.

Definition 12.3. The vectors $\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{n} \in \mathbb{R}^{m}$ are a basis of $\mathbb{R}^{m}$ if $\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{n}$ are both independent and $\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{n}$ span $\mathbb{R}^{m}$.

The dimension of $\mathbb{R}^{m}$ is $n$, the size of a basis.
Since we already observed that if the vectors $\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{n}$ are independent then $n \leq m$ and if the vectors $\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{n}$ span $\mathbb{R}^{m}$ then $n \geq m$. Therefore we must have $n=m$. Thus $\mathbb{R}^{m}$ has dimension $m$.

In fact we have:
Theorem 12.4. Let $A$ be an $n \times n$ matrix.
The columns of $A$ are a basis of $\mathbb{R}^{n}$ if and only if $A$ is invertible.
Example 12.5. Let $I_{n}$ be the identity matrix. Then $I_{n}$ is invertible. The columns of $A$ are

$$
\vec{e}_{1}=(1,0, \ldots, 0), \quad \vec{e}_{2}=(0,1, \ldots, 0) \quad \text { and } \quad \vec{e}_{n}=(0,0, \ldots, 1)
$$

a basis of $\mathbb{R}^{n}$, called the standard basis.
Example 12.6. Consider the vectors $\vec{v}_{1}=(1,1)$ and $\vec{v}_{2}=(1,-1)$.
We make a matrix with these columns:

$$
A=\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right)
$$

The determinant is

$$
a d-b c=1 \cdot-1-1 \cdot 1=-2 \neq 0 .
$$

This matrix is invertible. The vectors $\vec{v}_{1}=(1,1)$ and $\vec{v}_{2}=(1,-1)$ are a basis of $\mathbb{R}^{2}$.

In fact it is not hard to see this directly. $\vec{v}_{1}$ and $\vec{v}_{2}$ are not parallel, so they are independent. Two independent vectors in $\mathbb{R}^{2}$ always span. One can see this both algebraically and geometrically. Algebraically, if two vectors in the plane are independent then the homogeneous equation $A \vec{x}=\overrightarrow{0}$ has only one solution, the obvious solution $\vec{x}=(0,0)$. In this case $A$ must have two pivots and so there are no rows of zeroes. But then the equation $A \vec{x}=\vec{b}$ is always consistent and the two vectors $\vec{v}_{1}$ and $\vec{v}_{2}$ span $\mathbb{R}^{2}$.

