12. Basis and dimension

Recall two definitions:

Definition 12.1. The vectors $\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_n \in \mathbb{R}^m$ are (linearly) dependent if there are scalars x_1, x_2, \ldots, x_m , not all zero, such that

$$x_1 \vec{v}_1 + x_2 \vec{v}_2 + \dots + x_n \vec{v}_n = \vec{0}.$$

We say that the vectors are (linearly) independent if they are not dependent.

Linear independence places a restriction on the number n of vectors $\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_n$. If the vectors $\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_n \in \mathbb{R}^m$ are independent then $n \leq m$. You cannot have too many independent vectors.

At the other extreme we have:

Definition 12.2. We say that the vectors $\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_n \in \mathbb{R}^m$ spans \mathbb{R}^m if every vector $\vec{b} \in \mathbb{R}^m$ is a linear combination of $\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_n$.

Vectors which span places a restriction on the number n of vectors $\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_n$. If the vectors $\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_n \in \mathbb{R}^m$ span \mathbb{R}^m then $n \ge m$. You cannot have too few vectors which span.

Definition 12.3. The vectors $\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_n \in \mathbb{R}^m$ are a basis of \mathbb{R}^m if $\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_n$ are both independent and $\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_n$ span \mathbb{R}^m . The dimension of \mathbb{R}^m is n, the size of a basis.

Since we already observed that if the vectors $\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_n$ are independent then $n \leq m$ and if the vectors $\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_n$ span \mathbb{R}^m then $n \geq m$. Therefore we must have n = m. Thus \mathbb{R}^m has dimension m. In fact we have:

Theorem 12.4. Let A be an $n \times n$ matrix.

The columns of A are a basis of \mathbb{R}^n if and only if A is invertible.

Example 12.5. Let I_n be the identity matrix. Then I_n is invertible. The columns of A are

 $\vec{e}_1 = (1, 0, \dots, 0), \quad \vec{e}_2 = (0, 1, \dots, 0) \quad and \quad \vec{e}_n = (0, 0, \dots, 1)$

a basis of \mathbb{R}^n , called the standard basis.

Example 12.6. Consider the vectors $\vec{v}_1 = (1, 1)$ and $\vec{v}_2 = (1, -1)$.

We make a matrix with these columns:

$$A = \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}.$$

The determinant is

$$ad - bc = 1 \cdot -1 - 1 \cdot 1 = -2 \neq 0.$$

This matrix is invertible. The vectors $\vec{v}_1 = (1, 1)$ and $\vec{v}_2 = (1, -1)$ are a basis of \mathbb{R}^2 .

In fact it is not hard to see this directly. \vec{v}_1 and \vec{v}_2 are not parallel, so they are independent. Two independent vectors in \mathbb{R}^2 always span. One can see this both algebraically and geometrically. Algebraically, if two vectors in the plane are independent then the homogeneous equation $A\vec{x} = \vec{0}$ has only one solution, the obvious solution $\vec{x} = (0, 0)$. In this case A must have two pivots and so there are no rows of zeroes. But then the equation $A\vec{x} = \vec{b}$ is always consistent and the two vectors \vec{v}_1 and \vec{v}_2 span \mathbb{R}^2 .