15. Coordinate systems

If we choose a basis then every vector can uniquely written as a sum of the basis vectors.

For example, suppose we consider the basis $\vec{v}_{1}=(1,1)$ and $\vec{v}_{2}=$ $(1,-1)$ of \mathbb{R}^{2}. Consider the vector $\vec{b}=(3,1)$. Let's try to write this as a linear combination of \vec{v}_{1} and \vec{v}_{2} :

$$
\vec{b}=c_{1} \vec{v}_{1}+\vec{v}_{2} .
$$

As usual this gives us a system of linear equations:

$$
P \vec{c}=\vec{b},
$$

where $\vec{c}=\left(c_{1}, c_{2}\right), P$ is the matrix whose columns are \vec{v}_{1} and \vec{v}_{2} and $\vec{b}=(3,1) . P$ is called the change of coordinate matrix. We solve the augmented matrix using Gaussian elimination:

$$
\left(\begin{array}{cc|c}
1 & 1 & 3 \\
1 & -1 & 1
\end{array}\right) \rightarrow\left(\begin{array}{cc|c}
1 & 1 & 3 \\
0 & -2 & -2
\end{array}\right) \rightarrow\left(\begin{array}{ll|l}
1 & 1 & 3 \\
0 & 1 & 1
\end{array}\right) .
$$

So $c_{2}=1$ and

$$
c_{1}+1=3 \quad \text { so that } \quad c_{1}=2 .
$$

Note that this makes sense geometrically.
Using these ideas, we can figure out the dimension of P_{n}, the vector space of polynomials of degree n. Every polynomial of degree at most n can be uniquely written as a sum

$$
a_{0}+a_{1} t+a_{2} t^{2}+\cdots+a_{n} t^{n} .
$$

It follows that the polynomials $1, t, t^{2}, \ldots, t^{n}$ are a basis of P_{n}. P_{n} has dimension $n+1$. In coordinates, the polynomial

$$
a_{0}+a_{1} t+a_{2} t^{2}+\cdots+a_{n} t^{n}
$$

corresponds to the vector

$$
\left(a_{0}, a_{1}, \ldots, a_{n}\right) \in \mathbb{R}^{n+1}
$$

