19. The characteristic equation

If \vec{v} is an eigenvector with eigenvalue λ then

$$
A \vec{v}=\lambda \vec{v}
$$

As observed above if we rewrite the RHS as $\lambda I_{n} \vec{v}$ then

$$
A \vec{v}=\lambda I_{n} \vec{v} \quad \text { so that } \quad\left(A-\lambda I_{n}\right) \vec{v}=\overrightarrow{0}
$$

It follows that if λ is an eigenvalue of A then the null space of $A-$ λI_{n} is non-trivial, so that $A-\lambda I_{n}$ is not invertible. In this case the determinant of $A-\lambda I_{n}$ is zero. We can use the determinant to find the eigenvalues of A.

Example 19.1. What are the eigenvalues and eigenvectors of

$$
A=\left(\begin{array}{cc}
-8 & 5 \\
-10 & 7
\end{array}\right) ?
$$

We want to find the vectors \vec{v} such that

$$
A \vec{v}=\lambda \vec{v}
$$

for some scalar λ. We rewrite this as

$$
\left(A-\lambda I_{2}\right) \vec{v}=\overrightarrow{0} .
$$

We want to know when the matrix

$$
A-\lambda I_{2}=\left(\begin{array}{cc}
-8-\lambda & 5 \\
-10 & 7-\lambda
\end{array}\right)
$$

is not invertible. This is the same as to say that the determinant is zero. So we want those scalars λ such that

$$
\left|\begin{array}{cc}
-8-\lambda & 5 \\
-10 & 7-\lambda
\end{array}\right|=(-8-\lambda)(7-\lambda)+50=0
$$

Rearranging we get

$$
\lambda^{2}+\lambda-6=0
$$

$\lambda^{2}+\lambda-6$ is called the characteristic polynomial and $\lambda^{2}+\lambda-6=0$ is called the characteristic equation.

The roots of the characteristic polynomial are

$$
\lambda=2 \quad \text { and } \quad \lambda=-3 .
$$

The eigenvalues are $\lambda=2$ and $\lambda=-3$.
What are the corresponding eigenvectors?
If $\lambda=2$ then we want to calculate the nullspace of

$$
A-2 I_{2}=\left(\begin{array}{ll}
-10 & 5 \\
-10 & 5
\end{array}\right)
$$

If we apply Gaussian elimination we get

$$
\left(\begin{array}{cc}
1 & -1 / 2 \\
0 & 0
\end{array}\right)
$$

x is a basic variable and y is a free variable. If $y=1$ then $x=1 / 2$. So

$$
(1 / 2,1)
$$

If we multiply by 2 we still get an eigenvector:

$$
\vec{v}_{1}=(1,2)
$$

is an eigenvector with eigenvalue 2. Let's check:

$$
\left(\begin{array}{cc}
-8 & 5 \\
-10 & 7
\end{array}\right)\binom{1}{2}=\binom{2}{4}=2\binom{1}{2}
$$

as expected.
If $\lambda=-3$ then we want to calculate the nullspace of

$$
A+3 I_{2}=\left(\begin{array}{cc}
-5 & 5 \\
-10 & 10
\end{array}\right)
$$

If we apply Gaussian elimination we get

$$
\left(\begin{array}{cc}
1 & -1 \\
0 & 0
\end{array}\right)
$$

x is a basic variable and y is a free variable. If $y=1$ then $x=1$. So

$$
\vec{v}_{2}=(1,1)
$$

is an eigenvector with eigenvalue -3 . Let's check:

$$
\left(\begin{array}{cc}
-8 & 5 \\
-10 & 7
\end{array}\right)\binom{1}{1}=\binom{-3}{-3}=-3\binom{1}{2}
$$

as expected.
Definition-Theorem 19.2. Let A be an $n \times n$ matrix A.
The equation

$$
\operatorname{det}\left(A-\lambda I_{n}\right)=0
$$

is called the characteristic equation.
The roots of the characteristic polynomial are the eigenvalues of A.
Proof. If \vec{v} is an eigenvector with eigenvalue λ then

$$
A \vec{v}=\lambda \vec{v}
$$

Rearranging we get

$$
\left(A-\lambda I_{n}\right) \vec{v}=\overrightarrow{0}
$$

So λ is an eigenvalue if and only if A is not invertible if and only if $\operatorname{det}\left(A-\lambda I_{n}\right)=0$. Thus λ is a root of the characteristic polynomial.

Example 19.3. What are the eigenvalues and eigenvectors of

$$
A=\left(\begin{array}{ccc}
1 & 2 & 1 \\
6 & -1 & 0 \\
-1 & -2 & -1
\end{array}\right) ?
$$

As usual we are looking for vectors \vec{v} and scalars λ such that

$$
A \vec{v}=\lambda \vec{v} .
$$

Rearranging we get

$$
\left(A-\lambda I_{3}\right) \vec{v}=\overrightarrow{0}
$$

We are looking for roots of the characteristic equation. The characteristic polynomial is

$$
\begin{aligned}
\left|\begin{array}{ccc}
1-\lambda & 2 & 1 \\
6 & -1-\lambda & 0 \\
-1 & -2 & -1-\lambda
\end{array}\right| & =\left|\begin{array}{ccc}
1-\lambda & 6 & -1 \\
2 & -1-\lambda & -2 \\
1 & 0 & -1-\lambda
\end{array}\right| \\
& =-\left|\begin{array}{ccc}
1 & 0 & -1-\lambda \\
2 & -1-\lambda & -2 \\
1-\lambda & 6 & -1
\end{array}\right| \\
& =-1\left|\begin{array}{cc}
-1-\lambda & -2 \\
6 & -1
\end{array}\right|+(1+\lambda)\left|\begin{array}{cc}
2 & -1-\lambda \\
1-\lambda & 6
\end{array}\right| \\
& =-1(1+\lambda+12)+(1+\lambda)(12+(1-\lambda)(1+\lambda)) \\
& =-13-\lambda+12+12 \lambda+(1+\lambda)\left(1-\lambda^{2}\right) \\
& =12 \lambda-\lambda^{2}-\lambda^{3} \\
& =-\lambda\left(\lambda^{2}+\lambda-12\right) \\
& =-\lambda(\lambda-3)(\lambda+4) .
\end{aligned}
$$

The characteristic equation is

$$
\lambda(\lambda-3)(\lambda+4)=0
$$

So the eigenvalues are $\lambda=0, \lambda=3$ and $\lambda=-4$.
Let's calculate the corresponding eigenvectors. If $\lambda=0$ we want to calculate the nullspace of A. Let's apply Gaussian elimination:

$$
\left(\begin{array}{ccc}
1 & 2 & 1 \\
6 & -1 & 0 \\
-1 & -2 & -1
\end{array}\right) \rightarrow\left(\begin{array}{ccc}
1 & 2 & 1 \\
0 & -13 & -6 \\
0 & 0 & 0
\end{array}\right) \rightarrow\left(\begin{array}{ccc}
1 & 2 & 1 \\
0 & 1 & 6 / 13 \\
0 & 0 & 0
\end{array}\right)
$$

The elimination is complete. x and y are basic variables and z is a free variable. If $z=1$ then using the second equation we get

$$
y+6 / 13=0 \quad \text { so that } \quad y=-6 / 13
$$

But then

$$
x-12 / 13+1=0 \quad \text { so that } \quad x=-1 / 13
$$

We get

$$
(x, y, z)=(-1 / 13,-6 / 13,1)
$$

Multiplying through by 13 to get

$$
\vec{v}_{1}=(-1,-6,13) .
$$

Let's check:

$$
\left(\begin{array}{ccc}
1 & 2 & 1 \\
6 & -1 & 0 \\
-1 & -2 & -1
\end{array}\right)\left(\begin{array}{c}
-1 \\
-6 \\
13
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right)=0\left(\begin{array}{c}
-1 \\
-6 \\
13
\end{array}\right)
$$

as expected.
If $\lambda=-4$ we want to calculate the nullspace of $A+4 I_{3}$:

$$
A+4 I_{3}=\left(\begin{array}{ccc}
-2 & 2 & 1 \\
6 & 3 & 0 \\
-1 & -2 & 3
\end{array}\right)
$$

Let's apply Gaussian elimination:

$$
\left(\begin{array}{ccc}
5 & 2 & 1 \\
6 & 3 & 0 \\
-1 & -2 & 3
\end{array}\right) \rightarrow\left(\begin{array}{ccc}
1 & 2 & -3 \\
5 & 2 & 1 \\
6 & 3 & 0
\end{array}\right) \rightarrow\left(\begin{array}{ccc}
1 & 2 & -3 \\
0 & -8 & 16 \\
0 & -9 & 18
\end{array}\right)
$$

so that

$$
\rightarrow\left(\begin{array}{ccc}
1 & 2 & -3 \\
0 & 1 & -2 \\
0 & -9 & 18
\end{array}\right) \rightarrow\left(\begin{array}{ccc}
1 & 2 & -3 \\
0 & 1 & -2 \\
0 & 0 & 0
\end{array}\right)
$$

The elimination is complete. x and y are basic variables and z is a free variable. If $z=1$ then using the second equation we get

$$
y-2=0 \quad \text { so that } \quad y=2
$$

But then

$$
x+4-3=0 \quad \text { so that } \quad x=-1 .
$$

So

$$
\vec{v}_{2}=(-1,2,1)
$$

is an eigenvector with eigenvalue -4 . Let's check:

$$
\left(\begin{array}{ccc}
1 & 2 & 1 \\
6 & -1 & 0 \\
-1 & -2 & -1
\end{array}\right)\left(\begin{array}{c}
-1 \\
2 \\
1
\end{array}\right)=\left(\begin{array}{c}
4 \\
-8 \\
-4
\end{array}\right)=-4\left(\begin{array}{c}
-1 \\
2 \\
1
\end{array}\right)
$$

as expected.

If $\lambda=3$ we want to calculate the nullspace of $A-3 I_{3}$:

$$
A-3 I_{3}=\left(\begin{array}{ccc}
-2 & 2 & 1 \\
6 & -4 & 0 \\
-1 & -2 & -4
\end{array}\right)
$$

Let's apply Gaussian elimination:

$$
\left(\begin{array}{ccc}
-2 & 2 & 1 \\
6 & -4 & 0 \\
-1 & -2 & -4
\end{array}\right) \rightarrow\left(\begin{array}{ccc}
1 & -1 & -1 / 2 \\
6 & -4 & 0 \\
-1 & -2 & -4
\end{array}\right) \rightarrow\left(\begin{array}{ccc}
1 & -1 & -1 / 2 \\
0 & 2 & 3 \\
0 & -3 & -9 / 2
\end{array}\right) \rightarrow\left(\begin{array}{ccc}
1 & -1 & -1 / 2 \\
0 & 1 & 3 / 2 \\
0 & 0 & 0
\end{array}\right) .
$$

The elimination is complete. x and y are basic variables and z is a free variable. If $z=2$ then using the second equation we get

$$
y+3=0 \quad \text { so that } \quad y=-3
$$

But then

$$
x+3-1=0 \quad \text { so that } \quad x=-2 .
$$

Thus

$$
\vec{v}_{3}=(-2,-3,2)
$$

is an eigenvector with eigenvalue 3. Let's check:

$$
\left(\begin{array}{ccc}
1 & 2 & 1 \\
6 & -1 & 0 \\
-1 & -2 & -1
\end{array}\right)\left(\begin{array}{c}
-2 \\
-3 \\
2
\end{array}\right)=\left(\begin{array}{c}
-6 \\
-9 \\
6
\end{array}\right)=3\left(\begin{array}{c}
-6 \\
-9 \\
6
\end{array}\right)
$$

as expected.

