20. Diagonalisation

Definition 20.1. Let A and B be two square $n \times n$ matrices. We say that A and B are similar if there is an invertible square $n \times n$ matrix P such that $A=P B P^{-1}$.

We say that A is diagonalisable if A is similar to a diagonal matrix D.

Suppose that

$$
A=P B P^{-1}
$$

Then

$$
\begin{aligned}
A^{2} & =A \cdot A \\
& =\left(P B P^{-1}\right)\left(P B P^{-1}\right) \\
& =P B\left(P^{-1} P\right) B P^{-1} \\
& =P B B P^{-1} \\
& =P B^{2} P^{-1} .
\end{aligned}
$$

More generally we have:
Lemma 20.2. Suppose that A and B are two $n \times n$ square matrices and that P is an invertible matrix such that

$$
A=P B P^{-1}
$$

Then

$$
A^{n}=P B^{n} P^{-1}
$$

Proof. We prove this by induction on n. It is true for $n=1$ by assumption. Suppose that

$$
A^{n}=P B^{n} P^{-1}
$$

for some $n>0$. Then

$$
\begin{aligned}
A^{n+1} & =A \cdot A^{n} \\
& =\left(P B P^{-1}\right)\left(P B^{n} P^{-1}\right) \\
& =P B\left(P^{-1} P\right) B^{n} P^{-1} \\
& =P B B^{n} P^{-1} \\
& =P B^{n+1} P^{-1}
\end{aligned}
$$

as required. Thus the result holds by induction on n.
(20.2) gives us a practical way to compute the powers of a diagonalisable matrix A.

Theorem 20.3. Let A be an $n \times n$ matrix.
Then A is diagonalisable if and only if we can find a basis $\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{n}$ of eigenvectors for \mathbb{R}^{n}. In this case,

$$
A=P D P^{-1}
$$

where P is the matrix whose columns are the eigenvectors $\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{n}$ and D is the diagonal matrix whose diagonal entries are the corresponding eigenvalues $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$.

Proof. Suppose that $A=P D P^{-1}$, where the columns of P are $\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{n}$ and D is a diagonal matrix with entries $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$. We have

$$
\begin{aligned}
A \vec{v}_{i} & =\left(P D P^{-1}\right)\left(P \vec{e}_{i}\right) \\
& =(P D)\left(P^{-1} P\right) \vec{e}_{i} \\
& =P\left(D \vec{e}_{i}\right) \\
& =P\left(\lambda_{i} \vec{e}_{i}\right) \\
& =\lambda_{i}\left(P \vec{e}_{i}\right) \\
& =\lambda_{i} \vec{v}_{i} .
\end{aligned}
$$

Therefore \vec{v}_{i} is an eigenvector with eigenvalue λ_{i}. The vectors $\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{n}$ are a basis of \mathbb{R}^{n} as P is invertible.

Now for the other direction. Suppose that $\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{n}$ are a basis of eigenvectors. Let P be the matrix whose columns are the vectors $\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{n}$. Then P is an invertible matrix. Let $D=P^{-1} A P$. Then

$$
\begin{aligned}
D \vec{e}_{i} & =\left(P^{-1} A P\right) \vec{e}_{i} \\
& =P^{-1} A \vec{v}_{i} \\
& =P^{-1} \lambda_{i} \vec{v}_{i} \\
& =\lambda_{i} P^{-1} \vec{v}_{i} \\
& =\lambda_{i} \vec{e}_{i} .
\end{aligned}
$$

So D is the matrix whose i th row is the vector $\lambda_{i} \vec{e}_{i}$. But then D is a diagonal matrix with entries $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$ on the main diagonal. We have

$$
D=P^{-1} A P
$$

Multiplying both sides by P on the left, we get

$$
P D=A P
$$

Finally multiplying both sides on the right by P^{-1} we get

$$
A=P D P^{-1}
$$

Let's illustrate 20.3) by going back to the examples in $\S 19$.

Example 20.4. Is it possible to diagonalise

$$
A=\left(\begin{array}{cc}
-8 & 5 \\
-10 & 7
\end{array}\right) ?
$$

If the answer is yes, then diagonalise A.
We already saw that

$$
\vec{v}_{1}=(1,2)
$$

is an eigenvector with eigenvalue 2 , and

$$
\vec{v}_{2}=(1,1)
$$

is an eigenvector with eigenvalue -3 .
\vec{v}_{1} and \vec{v}_{2} are independent (either by inspection or because $2 \neq-3$). Thus A is diagonalisable.

Let

$$
P=\left(\begin{array}{ll}
1 & 1 \\
2 & 1
\end{array}\right)
$$

the matrix whose columns are the eigenvectors. Then

$$
P^{-1}=-1\left(\begin{array}{cc}
1 & -1 \\
-2 & 1
\end{array}\right)=\left(\begin{array}{cc}
-1 & 1 \\
2 & -1
\end{array}\right) .
$$

Let

$$
D=\left(\begin{array}{cc}
2 & 0 \\
0 & -3
\end{array}\right)
$$

the diagonal matrix whose entries on the diagonal are the eigenvalues. Let's compute $P D P^{-1}$:

$$
\left(\begin{array}{ll}
1 & 1 \\
2 & 1
\end{array}\right)\left(\begin{array}{cc}
2 & 0 \\
0 & -3
\end{array}\right)\left(\begin{array}{cc}
-1 & 1 \\
2 & -1
\end{array}\right)=\left(\begin{array}{ll}
1 & 1 \\
2 & 1
\end{array}\right)\left(\begin{array}{ll}
-2 & 2 \\
-6 & 3
\end{array}\right)=\left(\begin{array}{cc}
-8 & 5 \\
-10 & 7
\end{array}\right)
$$

as expected.
Now we can compute any power of A easily:

$$
A^{n}=P D^{n} P^{-1}
$$

We compute

$$
\begin{aligned}
\left(\begin{array}{cc}
-8 & 5 \\
-10 & 7
\end{array}\right)^{n} & =\left(\begin{array}{ll}
1 & 1 \\
2 & 1
\end{array}\right)\left(\begin{array}{cc}
2^{n} & 0 \\
0 & (-3)^{n}
\end{array}\right)\left(\begin{array}{cc}
-1 & 1 \\
2 & -1
\end{array}\right) \\
& =\left(\begin{array}{ll}
1 & 1 \\
2 & 1
\end{array}\right)\left(\begin{array}{cc}
-2^{n} & 2^{n} \\
2(-3)^{n} & -(-3)^{n}
\end{array}\right) \\
& =\left(\begin{array}{cc}
-2^{n}+2(-3)^{n} & 2^{n}-(-3)^{n} \\
-2^{n+1}+2(-3)^{n} & 2^{n+1}-(-3)^{n}
\end{array}\right) .
\end{aligned}
$$

Example 20.5. Is it possible to diagonalise

$$
A=\left(\begin{array}{ccc}
1 & 2 & 1 \\
6 & -1 & 0 \\
-1 & -2 & -1
\end{array}\right) ?
$$

If the answer is yes, then diagonalise A.
We already saw that

$$
\vec{v}_{1}=(-1,-6,13)
$$

is an eigenvector with eigenvalue 0 ,

$$
\vec{v}_{2}=(-1,2,1)
$$

is an eigenvector with eigenvalue -4 , and

$$
\vec{v}_{3}=(-2,-3,2)
$$

is an eigenvector with eigenvalue 3 .
\vec{v}_{1}, \vec{v}_{2} and \vec{v}_{3} are independent, since their eigenvalues $0,-4$ and 3 are distinct. Therefore they are a basis and so A is diagonalisable.

Let

$$
P=\left(\begin{array}{ccc}
-1 & -1 & -2 \\
-6 & 2 & -3 \\
13 & 1 & 2
\end{array}\right)
$$

the matrix whose columns are the eigenvectors. Then, with the aid of a computer,

$$
P^{-1}=\frac{1}{84}\left(\begin{array}{ccc}
7 & 0 & 7 \\
-27 & 24 & 9 \\
-32 & -12 & -8
\end{array}\right)
$$

Let

$$
D=\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & -4 & 0 \\
0 & 0 & 3
\end{array}\right)
$$

the diagonal matrix whose entries on the diagonal are the eigenvalues. Now we can compute any power of A easily:

$$
A^{n}=P D^{n} P^{-1}
$$

We compute

$$
\frac{1}{84}\left(\begin{array}{ccc}
-1 & -1 & -2 \\
-6 & 2 & -3 \\
13 & 1 & 2
\end{array}\right)\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & (-4)^{n} & 0 \\
0 & 0 & 3^{n}
\end{array}\right)\left(\begin{array}{ccc}
7 & 0 & 7 \\
-27 & 24 & 9 \\
-32 & -12 & -8
\end{array}\right)
$$

Example 20.6. Is it possible to diagonalise

$$
A=\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right)
$$

If the answer is yes, then diagonalise A.
We compute the eigenvalues of A :

$$
\left|\begin{array}{cc}
1-\lambda & 1 \\
0 & 1-\lambda
\end{array}\right|=(1-\lambda)^{2} .
$$

So the only eigenvalue is $\lambda=1$. We want to compute the null space of $A-I_{2}$:

$$
\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right)
$$

y is a basic variable and x is a free variable. $y=0$. Thus \vec{e}_{1} is an eigenvector with eigenvalue 1. A is not diagonalisable, we cannot find a basis of eigenvalues.
Example 20.7. Is it possible to diagonalise

$$
A=\left(\begin{array}{ccc}
-1 & 0 & 1 \\
3 & 0 & -3 \\
1 & 0 & -1
\end{array}\right)
$$

If the answer is yes, then diagonalise A.
The characteristic polynomial is:

$$
\begin{aligned}
\left|\begin{array}{ccc}
-1-\lambda & 0 & 1 \\
3 & -\lambda & -3 \\
1 & 0 & -1-\lambda
\end{array}\right| & =-(1+\lambda)\left|\begin{array}{cc}
-\lambda & -3 \\
0 & -1-\lambda
\end{array}\right|+\left|\begin{array}{cc}
3 & -\lambda \\
1 & 0
\end{array}\right| \\
& =-(1+\lambda)^{2} \lambda+\lambda \\
& =-\lambda^{2}(\lambda+2)
\end{aligned}
$$

Thus the eigenvalues are 0 and -2 .
We want to calculate the nullspace of A. We apply Gaussian elimination:

$$
\left(\begin{array}{ccc}
-1 & 0 & 1 \\
3 & 0 & -3 \\
1 & 0 & -1
\end{array}\right) \rightarrow\left(\begin{array}{ccc}
1 & 0 & -1 \\
3 & 0 & -3 \\
1 & 0 & -1
\end{array}\right) \rightarrow\left(\begin{array}{ccc}
1 & 0 & -1 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)
$$

x is a basic variable, y and z are free variables.

$$
x-z=0 \quad \text { so that } \quad x=z
$$

The general solution is

$$
(x, y, z)=(z, y, z)=\underset{5}{y}(0,1,0)+z(1,0,1) .
$$

A basis for the nullspace is given by $(0,1,0)$ and $(1,0,1)$.

$$
\vec{v}_{1}=(0,1,0) \quad \text { and } \quad \vec{v}_{2}=(1,0,1)
$$

are independent eigenvectors with eigenvalue 0 .
We want to calculate the nullspace of $A+2 I_{3}$.

$$
A+2 I_{3}=\left(\begin{array}{ccc}
1 & 0 & 1 \\
3 & 2 & -3 \\
1 & 0 & 1
\end{array}\right)
$$

We apply Gaussian elimination:

$$
\left(\begin{array}{ccc}
1 & 0 & 1 \\
3 & 2 & -3 \\
1 & 0 & 1
\end{array}\right) \rightarrow\left(\begin{array}{ccc}
1 & 0 & 1 \\
0 & 2 & -6 \\
0 & 0 & 0
\end{array}\right) \rightarrow\left(\begin{array}{ccc}
1 & 0 & -1 \\
0 & 1 & -3 \\
0 & 0 & 0
\end{array}\right)
$$

x and y are basic variables, z is a free variable.

$$
y-3 z=0 \quad \text { so that } \quad y=3 z .
$$

Therefore

$$
x+z=0 \quad \text { so that } \quad x=-z .
$$

The general solution is

$$
\begin{gathered}
(x, y, z)=(-z, 3 z, z)=z(-1,3,1) . \\
\vec{v}_{3}=(-1,3,1)
\end{gathered}
$$

is an eigenvector with eigenvalue -2 . The vectors \vec{v}_{1}, \vec{v}_{2} and \vec{v}_{3} are independent, thus A is diagonalisable.

Let

$$
P=\left(\begin{array}{ccc}
0 & 1 & -1 \\
1 & 0 & 3 \\
0 & 1 & 1
\end{array}\right)
$$

the matrix whose columns are the eigenvectors. Then, with the aid of a computer,

$$
P^{-1}=\frac{1}{2}\left(\begin{array}{ccc}
3 & 1 & -3 \\
1 & 0 & 1 \\
-1 & 0 & 1
\end{array}\right)
$$

Let

$$
D=\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & -2
\end{array}\right)
$$

the diagonal matrix whose entries on the diagonal are the eigenvalues. Now we can compute any power of A easily:

$$
A^{n}=P D^{n} P^{-1}
$$

We compute

$$
\frac{1}{2}\left(\begin{array}{ccc}
0 & 1 & -1 \\
1 & 0 & 3 \\
0 & 1 & 1
\end{array}\right)\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & (-2)^{n}
\end{array}\right)\left(\begin{array}{ccc}
3 & 1 & -3 \\
1 & 0 & 1 \\
-1 & 0 & 1
\end{array}\right)
$$

