21. The dot Product

Definition 21.1. The dot product of two vectors \vec{u} and \vec{v} in \mathbb{R}^{n} is the sum

$$
\vec{u} \cdot \vec{v}=u_{1} v_{1}+u_{2} v_{2}+\cdots+u_{n} v_{n}
$$

Example 21.2. The dot product of $\vec{u}=(1,1)$ and $\vec{v}=(2,-1)$ is

$$
\vec{u} \cdot \vec{v}=1 \cdot 2+1 \cdot-1=1 .
$$

The dot product of $\vec{u}=(1,2,3)$ and $\vec{v}=(2,-1,1)$ is

$$
\vec{u} \cdot \vec{v}=1 \cdot 2+2 \cdot-1+3 \cdot 1=3 .
$$

Note that when we compute the product of two matrices A and B in essence we are computing an array of dot products. In particular the dot product can be identified with the matrix product $\vec{u}^{T} \cdot \vec{v}$.
Definition 21.3. The length of a vector $\vec{v} \in \mathbb{R}^{n}$ is the square root of the dot product of \vec{v} with itself:

$$
\|\vec{v}\|=\sqrt{\vec{v} \cdot \vec{v}}=\sqrt{v_{1}^{2}+v_{2}^{2}+\cdots+v_{n}^{2}}
$$

Note that

$$
\|(x, y)\|=\sqrt{x^{2}+y^{2}} \quad \text { and } \quad\|(x, y, z)\|=\sqrt{x^{2}+y^{2}+z^{2}}
$$

the usual formula for the length, using Pythagoras.
Example 21.4. What is the length of the vector $\vec{v}=(1,-2,2)$?

$$
\vec{v} \cdot \vec{v}=1^{2}+2^{2}+2^{2}=9
$$

So the length is 3 .
Note that the vector

$$
\hat{u}=\frac{1}{3} \vec{v}=(1 / 3,-2 / 3,2 / 3)
$$

is a vector of unit length with the same direction as \vec{v}.
Definition 21.5. Let p and q be two points in \mathbb{R}^{n}.
The distance between P and Q is the length of the vector

$$
\vec{v}=q-p .
$$

Let $p=(1,1,1)$ and $q=(2,-1,3)$. Then

$$
\vec{v}=(2,-1,3)-(1,1,1)=(1,-2,1) .
$$

So the distance between p and q is 3 , the length of \vec{v}.
Definition 21.6. We say two vectors are orthogonal if $\vec{u} \cdot \vec{v}=0$.

The standard basis vectors $\vec{e}_{1}, \vec{e}_{2}, \ldots, \vec{e}_{n}$ of \mathbb{R}^{n} are orthogonal.
Example 21.7. Are the vectors $\vec{u}=(1,1,-2)$ and $\vec{v}=(2,0,1)$ orthogonal?

$$
\vec{u} \cdot \vec{v}=(1,1,-2) \cdot(2,0,1)=2+0-2=0
$$

so that \vec{u} and \vec{v} are orthogonal.
Definition-Theorem 21.8. Let $W \subset \mathbb{R}^{n}$ be a linear subspace. The orthogonal complement of W is

$$
W^{\perp}=\left\{v \in \mathbb{R}^{n} \mid v \cdot w=0\right\}
$$

the set of all vectors which are orthogonal to every vector in W.
Then W^{\perp} is a linear subspace of \mathbb{R}^{n}.
For example, suppose we start with a plane H in \mathbb{R}^{3} through the origin. Then there is a line L in \mathbb{R}^{3} through the origin which is the orthogonal complement of H :

$$
L=H^{\perp}
$$

The line L is spanned by a vector which is orthogonal to every vector in H. Note that the relation between L and H is reciprocal, H is the orthogonal complement of L :

$$
H=L^{\perp}
$$

Theorem 21.9. Let A be an $m \times n$ matrix.
The orthogonal complement of the row space of A is the null space of A and the orthogonal complement of the column space of A is the null space of A^{T} :

$$
(\operatorname{Row} A)^{\perp}=\operatorname{Nul} A \quad \text { and } \quad(\operatorname{Col} A)^{\perp}=\operatorname{Nul} A^{T} .
$$

Proof. The rows of A correspond to equations. If a row is given by the vector

$$
\vec{a}=\left(a_{1}, a_{2}, \ldots, a_{n}\right)
$$

then the corresponding equation is

$$
a_{1} x_{1}+a_{2} x_{2}+\cdots+a_{n} x_{n}=0
$$

\vec{x} is in the null space if and only if it satisfies every equation.
But \vec{x} satisfies the equation

$$
a_{1} x_{1}+a_{2} x_{2}+\cdots+a_{n} x_{n}=0
$$

if and only if the dot product $\vec{a} \cdot \vec{x}=0$.
Thus \vec{x} is in the null space if and only if it is in the orthogonal complement of the row space.

Now consider the matrix A^{T}. By what we just proved the null space of A^{T} is the orthogonal complement of the row space of A^{T}. But the row space of A^{T} is nothing but the column space of A.

