Let's suppose we start with an $m \times n$ matrix A and we consider the problem of trying to solve a system of linear equations:

$$A\vec{x} = \vec{b}.$$

There are two natural questions:

- (1) For which $\vec{b} \in \mathbb{R}^m$ is there a solution?
- (2) If for some \vec{b} there is a solution $\vec{x} \in \mathbb{R}^n$, how many solutions can we find?

If $A\vec{x} = \vec{b}$ then \vec{b} is a linear combination of the columns $\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_n$ of A:

$$x_1\vec{v}_1 + x_2\vec{v}_2 + \dots + x_n\vec{v}_n = \vec{b}$$

This is the answer to question #1.

Note that if \vec{x}_p is a solution to $A\vec{x} = \vec{b}$ then the set of all solutions has the form $\vec{x}_p + \vec{x}_h$, where \vec{x}_h is any solution to the homogeneous:

 $A\vec{x} = \vec{0}.$

So if the equation $A\vec{x} = \vec{b}$ has one solution then it has as many solutions as the homogeneous. This is the answer to question #2.

Both the linear span and the solutions to the homogeneous are examples of linear subspaces:

 $H \subset \mathbb{R}^n$ is a linear subspace if

- (1) $\vec{0} \in H$,
- (2) *H* is closed under addition, $\vec{u} \in H$ and $\vec{v} \in H$ implies $\vec{u} + \vec{v} \in H$,
- (3) H is closed under scalar multiplication, $\vec{u} \in H$ and λ a scalar implies $\lambda \vec{u} \in H$.

The span of the columns is called the column space and the solutions to the homogeneous is called the nullspace.

The most basic question one can ask about a linear subspace is what is the dimension, the size of a basis. A basis is a set of vectors $\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_n$ which are both independent and span.

Rank-nullity says that the rank of A, the dimension of the column space plus the nullity of A, the dimension of the nullspace, is n.

Example 22.1. What is a basis for the column space, the row space, the nullspace and what is the rank and nullity of the following matrix:

$$\begin{pmatrix} 1 & -4 & 9 & -7 \\ -1 & 2 & -4 & 1 \\ 5 & -6 & 10 & 7 \end{pmatrix}?$$

We apply Gaussian elimination:

$$\rightarrow \begin{pmatrix} 1 & -4 & 9 & -7 \\ 0 & -2 & 5 & -6 \\ 0 & 14 & -35 & 42 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & -4 & 9 & -7 \\ 0 & 1 & -5/2 & 3 \\ 0 & 2 & -5 & 6 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & -4 & 9 & -7 \\ 0 & 1 & -5/2 & 3 \\ 0 & 0 & 0 & 0 \end{pmatrix}.$$

There are pivots in the first and second column. The first and second columns of A are a basis for the column space:

$$\vec{c}_1 = (1, -1, 5)$$
 and $\vec{c}_2 = (-4, 2, -6).$

The rank is 2, the dimension of the column space.

There are pivots in the first and second row. The first and second row of the endproduct of elimination are a basis for the row space:

$$\vec{r}_1 = (1, -4, 9, -7)$$
 and $\vec{r}_2 = (0, 1, -5/2, 3)$

Note that the dimension of the row space is the same as the dimension of the column space. This is part of the statement of rank-nullity.

To find the nullspace we need to solve the homogeneous. We do this by back substitution. x and y are basic variables, z and w are free variables.

$$y - 5z/2 + 3w = 0$$
 so that $y = 5z/2 - 3w$.

But then

$$x - 10z + 12w + 9z - 7w = 0$$
 so that $x = z - 5w$.

The general solution is:

$$(x, y, z, w) = (z - 5w, 5z/2 - 3w, z, w) = z(1, 5/2, 1, 0) + w(-5, -3, 0, 1).$$

A basis is given by

 $\vec{n}_1 = (2, 5, 2, 0)$ and $\vec{n}_2 = (-5, -2, 0, 1).$

The nullity is 2. Note that the rank plus the nullity is 2 + 2 = 4, as expected.

Example 22.2. Are the vectors $\vec{v}_1 = (-1, 3, 5, 4)$, $\vec{v}_2 = (2, 4, 2, 2)$, $\vec{v}_3 = (3, 3, 6, 4)$, $\vec{v}_4 = (0, 0, 6, 3)$ a basis of \mathbb{R}^4 ?

Let A be the matrix whose columns are the vectors $\vec{v}_1, \vec{v}_2, \vec{v}_3$ and \vec{v}_4 :

$$\begin{pmatrix} -1 & 2 & 3 & 0 \\ 3 & 4 & 3 & 0 \\ 5 & 2 & 6 & 6 \\ 4 & 2 & 4 & 3 \end{pmatrix}$$

Then $\vec{v_1}$, $\vec{v_2}$, $\vec{v_3}$ and $\vec{v_4}$ are a basis if and only if A invertible. Indeed, $\vec{v_1}$, $\vec{v_2}$, $\vec{v_3}$ and $\vec{v_4}$ are a basis if and only if

$$A\vec{x} = \vec{b}$$

has exactly one solution. This happens if and only if A is invertible.

To check whether or not A is invertible we could either apply Gaussian elimination or compute the determinant:

$$\begin{array}{l} -1 & 2 & 3 & 0 \\ 3 & 4 & 3 & 0 \\ 5 & 2 & 6 & 6 \\ 4 & 2 & 4 & 3 \\ \end{array} \right| = \begin{vmatrix} -4 & -2 & 0 & 0 \\ 3 & 4 & 3 & 0 \\ 5 & 2 & 0 & 6 \\ 4 & 2 & 1 & 3 \\ \end{array} \\ = 2 \cdot 3 \begin{vmatrix} 2 & 1 & 0 & 0 \\ 3 & 4 & 3 & 0 \\ 5 & 2 & 0 & 6 \\ 4 & 2 & 1 & 3 \\ \end{vmatrix} \\ = 2 \cdot 3 \begin{vmatrix} 2 & 1 & 0 & 0 \\ 3 & 4 & 3 & 0 \\ 5 & 2 & 0 & 2 \\ 4 & 2 & 1 & 1 \\ \end{vmatrix} \\ = 2 \cdot 3 \begin{vmatrix} 2 & 1 & 0 & 0 \\ 3 & 4 & 3 & 0 \\ 5 & 2 & 0 & 2 \\ -1 & 0 & 1 & -1 \\ \end{vmatrix} \\ = 2 \cdot 3(2 \begin{vmatrix} 4 & 3 & 0 \\ 2 & 0 & 2 \\ 0 & 1 & -1 \\ \end{vmatrix} - 1 \begin{vmatrix} 3 & 3 & 0 \\ 5 & 0 & 6 \\ -1 & 1 & -3 \\ \end{vmatrix} \\ = -2 \cdot 3(2 \cdot 2 \begin{vmatrix} 1 & 0 & 1 \\ 4 & 3 & 0 \\ 0 & 1 & -1 \\ \end{vmatrix} + 3 \begin{vmatrix} 1 & 1 & 0 \\ 5 & 0 & 2 \\ -1 & 1 & -1 \\ \end{vmatrix}) \\ = -2 \cdot 3(2 \cdot 2 (\begin{vmatrix} 3 & 0 \\ 1 & -1 \\ \end{vmatrix} + 3 \begin{vmatrix} 1 & 1 & 0 \\ 5 & 0 & 2 \\ -1 & 1 & -1 \\ \end{vmatrix}) \\ = -2 \cdot 3(2 \cdot 2 (-3 + 4) + 3(-2 + 3)) \\ = 2 \cdot 3(2 \cdot 2 + 3) \\ = 42. \end{aligned}$$

Therefore $\vec{v}_1, \vec{v}_2, \vec{v}_3$ and \vec{v}_4 are a basis.