22. 2ND MIDTERM REVIEW

Let's suppose we start with an $m \times n$ matrix A and we consider the problem of trying to solve a system of linear equations:

$$
A \vec{x}=\vec{b}
$$

There are two natural questions:
(1) For which $\vec{b} \in \mathbb{R}^{m}$ is there a solution?
(2) If for some \vec{b} there is a solution $\vec{x} \in \mathbb{R}^{n}$, how many solutions can we find?
If $A \vec{x}=\vec{b}$ then \vec{b} is a linear combination of the columns $\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{n}$ of A :

$$
x_{1} \vec{v}_{1}+x_{2} \vec{v}_{2}+\cdots+x_{n} \vec{v}_{n}=\vec{b}
$$

This is the answer to question $\# 1$.
Note that if \vec{x}_{p} is a solution to $A \vec{x}=\vec{b}$ then the set of all solutions has the form $\vec{x}_{p}+\vec{x}_{h}$, where \vec{x}_{h} is any solution to the homogeneous:

$$
A \vec{x}=\overrightarrow{0} .
$$

So if the equation $A \vec{x}=\vec{b}$ has one solution then it has as many solutions as the homogeneous. This is the answer to question $\# 2$.

Both the linear span and the solutions to the homogeneous are examples of linear subspaces:
$H \subset \mathbb{R}^{n}$ is a linear subspace if
(1) $\overrightarrow{0} \in H$,
(2) H is closed under addition, $\vec{u} \in H$ and $\vec{v} \in H$ implies $\vec{u}+\vec{v} \in H$,
(3) H is closed under scalar multiplication, $\vec{u} \in H$ and λ a scalar implies $\lambda \vec{u} \in H$.
The span of the columns is called the column space and the solutions to the homogeneous is called the nullspace.

The most basic question one can ask about a linear subspace is what is the dimension, the size of a basis. A basis is a set of vectors $\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{n}$ which are both independent and span.

Rank-nullity says that the rank of A, the dimension of the column space plus the nullity of A, the dimension of the nullspace, is n.

Example 22.1. What is a basis for the column space, the row space, the nullspace and what is the rank and nullity of the following matrix:

$$
\left(\begin{array}{cccc}
1 & -4 & 9 & -7 \\
-1 & 2 & -4 & 1 \\
5 & -6 & 10 & 7
\end{array}\right) ?
$$

We apply Gaussian elimination:

$$
\rightarrow\left(\begin{array}{cccc}
1 & -4 & 9 & -7 \\
0 & -2 & 5 & -6 \\
0 & 14 & -35 & 42
\end{array}\right) \rightarrow\left(\begin{array}{cccc}
1 & -4 & 9 & -7 \\
0 & 1 & -5 / 2 & 3 \\
0 & 2 & -5 & 6
\end{array}\right) \rightarrow\left(\begin{array}{cccc}
1 & -4 & 9 & -7 \\
0 & 1 & -5 / 2 & 3 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

There are pivots in the first and second column. The first and second columns of A are a basis for the column space:

$$
\vec{c}_{1}=(1,-1,5) \quad \text { and } \quad \vec{c}_{2}=(-4,2,-6) .
$$

The rank is 2 , the dimension of the column space.
There are pivots in the first and second row. The first and second row of the endproduct of elimination are a basis for the row space:

$$
\vec{r}_{1}=(1,-4,9,-7) \quad \text { and } \quad \vec{r}_{2}=(0,1,-5 / 2,3)
$$

Note that the dimension of the row space is the same as the dimension of the column space. This is part of the statement of rank-nullity.

To find the nullspace we need to solve the homogeneous. We do this by back substitution. x and y are basic variables, z and w are free variables.

$$
y-5 z / 2+3 w=0 \quad \text { so that } \quad y=5 z / 2-3 w
$$

But then

$$
x-10 z+12 w+9 z-7 w=0 \quad \text { so that } \quad x=z-5 w
$$

The general solution is:

$$
(x, y, z, w)=(z-5 w, 5 z / 2-3 w, z, w)=z(1,5 / 2,1,0)+w(-5,-3,0,1)
$$

A basis is given by

$$
\vec{n}_{1}=(2,5,2,0) \quad \text { and } \quad \vec{n}_{2}=(-5,-2,0,1) .
$$

The nullity is 2 . Note that the rank plus the nullity is $2+2=4$, as expected.
Example 22.2. Are the vectors $\vec{v}_{1}=(-1,3,5,4), \vec{v}_{2}=(2,4,2,2)$, $\vec{v}_{3}=(3,3,6,4), \vec{v}_{4}=(0,0,6,3)$ a basis of \mathbb{R}^{4} ?

Let A be the matrix whose columns are the vectors $\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}$ and \vec{v}_{4} :

$$
\left(\begin{array}{cccc}
-1 & 2 & 3 & 0 \\
3 & 4 & 3 & 0 \\
5 & 2 & 6 & 6 \\
4 & 2 & 4 & 3
\end{array}\right)
$$

Then $\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}$ and \vec{v}_{4} are a basis if and only if A invertible. Indeed, $\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}$ and \vec{v}_{4} are a basis if and only if

$$
A \vec{x}=\vec{b}
$$

has exactly one solution. This happens if and only if A is invertible.
To check whether or not A is invertible we could either apply Gaussian elimination or compute the determinant:

$$
\begin{aligned}
\left|\begin{array}{cccc}
-1 & 2 & 3 & 0 \\
3 & 4 & 3 & 0 \\
5 & 2 & 6 & 6 \\
4 & 2 & 4 & 3
\end{array}\right|= & \left|\begin{array}{cccc}
-1 & 2 & 3 & 0 \\
3 & 4 & 3 & 0 \\
5 & 2 & 0 & 6 \\
4 & 2 & 1 & 3
\end{array}\right| \\
& =\left|\begin{array}{cccc}
-4 & -2 & 0 & 0 \\
3 & 4 & 3 & 0 \\
5 & 2 & 0 & 6 \\
4 & 2 & 1 & 3
\end{array}\right| \\
& =2 \cdot 3\left|\begin{array}{llll}
2 & 1 & 0 & 0 \\
3 & 4 & 3 & 0 \\
5 & 2 & 0 & 2 \\
4 & 2 & 1 & 1
\end{array}\right| \\
& =2 \cdot 3\left|\begin{array}{cccc}
2 & 1 & 0 & 0 \\
3 & 4 & 3 & 0 \\
5 & 2 & 0 & 2 \\
-1 & 0 & 1 & -1
\end{array}\right| \\
& =2 \cdot 3\left(2\left|\begin{array}{lll}
4 & 3 & 0 \\
2 & 0 & 2 \\
0 & 1 & -1
\end{array}\right|-1\left|\begin{array}{cc}
3 & 3 \\
5 & 0 \\
5 & 6 \\
-1 & 1 \\
-3
\end{array}\right|\right) \\
& =-2 \cdot 3\left(2 \cdot 2\left|\begin{array}{cc}
1 & 0 \\
4 & 3 \\
0 & 0
\end{array}\right|+3\left|\begin{array}{cc}
1 & 1 \\
5 & 0 \\
0 \\
-1 & 1
\end{array}\right|\right) \\
& =-2 \cdot 3\left(2 \cdot 2 \left(\begin{array}{ll}
3 & 0 \\
1 & -1
\end{array}\left|+\left|\begin{array}{cc}
4 & 0 \\
0 & 1
\end{array}\right|\right)+3\left(\begin{array}{lc}
0 & 2 \\
1 & -1
\end{array}\left|-\left|\begin{array}{cc}
5 & 2 \\
-1 & -1
\end{array}\right|\right)\right.\right.\right. \\
& =-2 \cdot 3(2 \cdot 2(-3+4)+3(-2+3)) \\
& =2 \cdot 3(2 \cdot 2+3) \\
& =42
\end{aligned}
$$

Therefore $\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}$ and \vec{v}_{4} are a basis.

