25. Orthogonal projection

What is the distance between a point p and a plane H in \mathbb{R}^{3} ? What is the distance between a point p and a line L in \mathbb{R}^{3} ? In the first case we want a point $q \in H$ such that the line $p q$ is orthogonal to H. Similarly we want a point q on L such that the line $p q$ is orthogonal to L.

Let's use vectors to solve this problem. Let's assume that H and l contain the origin, so that they are linear subspaces. We first treat the second problem of a line through the origin. In this case the line L is the span of a single vector \vec{u}.

The point p is represented by a vector \vec{y}. The orthogonal projection q is a point of the line L so that there is a scalar α such that the vector corresponding to q is $\vec{y}_{0}=\alpha \vec{u}$. What is left over,

$$
\vec{y}_{1}=\vec{y}-\alpha \vec{u}
$$

is orthogonal to \vec{u}. So

$$
0=\overrightarrow{y_{1}} \cdot \vec{u}=(\vec{y}-\alpha \vec{u}) \cdot \vec{u}=\vec{y} \cdot \vec{u}-\alpha \vec{u} \cdot \vec{u} .
$$

Thus

$$
\alpha=\frac{\vec{y} \cdot \vec{u}}{\vec{u} \cdot \vec{u}} .
$$

The orthogonal projection of \vec{y} onto L is then the vector

$$
\vec{y}_{0}=\operatorname{proj}_{L} \vec{y}=\frac{\vec{y} \cdot \vec{u}}{\vec{u} \cdot \vec{u}} \vec{u} .
$$

Note that this formula is valid in \mathbb{R}^{n}.
Example 25.1. What is the distance between the point $p=(1,-1,2)$ and the line L given parametrically as $(t, 2 t, 3 t)$?

Let $\vec{y}=(1,-1,2)$. We want the point q on the line L closest to p. The corresponding vector \vec{y}_{0} is a multiple of $\vec{u}=(1,2,3)$.

$$
\vec{y}_{0}=\operatorname{proj}_{L} \vec{y}=\frac{(1,-1,2) \cdot(1,2,3)}{(1,2,3) \cdot(1,2,3)}(1,2,3)=\frac{5}{14}(1,2,3) .
$$

We want the distance between $(1,-1,2)$ and $\frac{5}{14}(1,2,3)$:

$$
\sqrt{\frac{81}{14^{2}}+\frac{144}{49}+\frac{169}{14^{2}}}=\sqrt{\frac{125}{2 \cdot 49}+\frac{144}{49}}=\sqrt{\frac{59}{14}} .
$$

Now let's turn to the first problem, the distance between a point p and a plane H. Suppose that H is the span of two orthogonal vectors \vec{u}_{1} and \vec{u}_{2}, so that

$$
\left\{\vec{u}_{1}, \vec{u}_{2}\right\}
$$

is an orthogonal basis of H.

As before let \vec{y} be the vector corresponding to p and let $\vec{y}_{0} \in H$ be the closest vector to \vec{y}. Then $\vec{y}_{1}=\vec{y}-\vec{y}_{0}$ is orthogonal to H, so that it is orthogonal to \vec{u}_{1} and \vec{u}_{2}.

As $\vec{y}_{0} \in H$ and $\left\{\vec{u}_{1}, \vec{u}_{2}\right\}$ is a basis of H we may find scalars α_{1} and α_{2} such that

$$
\vec{y}_{0}=\operatorname{proj}_{H} \vec{y}=\alpha_{1} \vec{u}_{1}+\alpha_{2} \vec{u}_{2} .
$$

We know that

$$
\vec{y}_{1}=\vec{y}-\vec{y}_{0}=\vec{y}-\left(\alpha_{1} \vec{u}_{1}+\alpha_{2} \vec{u}_{2}\right)
$$

is orthogonal to H, that is, it is orthogonal to \vec{u}_{1} and \vec{u}_{2}. Thus

$$
0=\vec{y}_{1} \cdot \vec{u}_{1}=\left(\vec{y}-\alpha_{1} \vec{u}_{1}-\alpha_{2} \vec{u}_{2}\right) \cdot \vec{u}_{1}=\vec{y} \cdot \vec{u}_{1}-\alpha_{1} \vec{u}_{1} \cdot \vec{u}_{1} .
$$

Solving for α_{1} we get:

$$
\alpha_{1}=\frac{\vec{y} \cdot \vec{u}_{1}}{\vec{u}_{1} \cdot \vec{u}_{1}} .
$$

The same piece of algebra with the subscript ${ }_{2}$ replacing the subscript 1 yields:

$$
\alpha_{2}=\frac{\vec{y} \cdot \vec{u}_{2}}{\vec{u}_{2} \cdot \vec{u}_{2}} .
$$

Example 25.2. What is the distance between the point $p=(3,1,5,1)$ and the plane spanned by the vectors $\vec{u}_{1}=(3,1,-1,1)$ and $\vec{u}_{2}=$ $(1,-1,1,-1)$ in \mathbb{R}^{4} ?

We check that \vec{u}_{1} and \vec{u}_{2} are orthogonal:

$$
\vec{u}_{1} \cdot \vec{u}_{2}=(3,1,-1,1) \cdot(1,-1,1,-1)=0 .
$$

So \vec{u}_{1} and \vec{u}_{2} are orthogonal. We try to write $\vec{y}=(3,1,5,1)$ as a sum $\vec{y}_{0}+\vec{y}_{1}$, where

$$
\vec{y}_{0}=\operatorname{proj}_{H} \vec{y}=\alpha_{1} \vec{u}_{1}+\alpha_{2} \vec{u}_{2} .
$$

We have

$$
\alpha_{1}=\frac{(3,1,5,1) \cdot(3,1,-1,1)}{(3,1,-1,1) \cdot(3,1,-1,1)}=\frac{6}{12}=\frac{1}{2}
$$

and

$$
\alpha_{2}=\frac{(3,1,5,1) \cdot(1,-1,1,-1)}{(1,-1,1,-1) \cdot(1,-1,1,-1)}=\frac{6}{4}=\frac{3}{2} .
$$

Thus the closest vector to $\vec{y}=(3,1,5,1)$ in H is

$$
\vec{y}_{0}=\operatorname{proj}_{H} \vec{y}=\frac{1}{2}(3,1,-1,1)+\frac{3}{2}(1,-1,1,-1)=(3,-1,1,-1) .
$$

The distance between p and H is the length of the vector

$$
\vec{y}_{1}=\vec{y}-\vec{y}_{0}=(3,1,5,1)-(3,-1,1,-1)=(0,2,4,2)=2(0,1,2,1) .
$$

The distance is

$$
2 \sqrt{1+4+1}=2 \sqrt{6}
$$

There are general results along these lines whose proofs are simple generalisations of the arguments above:
Definition-Theorem 25.3. If W is a subspace of \mathbb{R}^{n} and \vec{y} is a vector in \mathbb{R}^{n} then we may uniquely decompose

$$
\vec{y}=\vec{y}_{0}+\vec{y}_{1}
$$

where $\vec{y}_{0} \in W$ and \vec{y}_{1} is orthogonal to $W . \vec{y}_{0}=\operatorname{proj}_{W} \vec{y}$ is called the orthogonal projection of \vec{y} onto W.

If

$$
\left\{\vec{u}_{1}, \vec{u}_{2}, \ldots, \vec{u}_{k}\right\}
$$

is an orthogonal basis of W then

$$
\vec{y}_{0}=\operatorname{proj}_{W} \vec{y}=\frac{\vec{y} \cdot \vec{u}_{1}}{\vec{u}_{1} \cdot \vec{u}_{1}} \vec{u}_{1}+\frac{\vec{y} \cdot \vec{u}_{2}}{\vec{u}_{2} \cdot \vec{u}_{2}} \vec{u}_{2}+\cdots+\frac{\vec{y} \cdot \vec{u}_{n}}{\vec{u}_{n} \cdot \vec{u}_{n}} \vec{u}_{n} .
$$

Theorem 25.4. If W is a subspace of \mathbb{R}^{n} and \vec{y} is a vector in \mathbb{R}^{n} then the orthogonal projection $\vec{y}_{0}=\operatorname{proj}_{W} \vec{y}$ is the closest point in W to \vec{y}, that is,

$$
\left\|\vec{y}-\vec{y}_{0}\right\| \leq\|\vec{y}-\vec{w}\| \quad \text { for all } \quad \vec{w} \in W
$$

with equality if and only if $\vec{w}=\vec{y}_{0}$.

