25. Orthogonal projection

What is the distance between a point p and a plane H in \mathbb{R}^3 ? What is the distance between a point p and a line L in \mathbb{R}^3 ? In the first case we want a point $q \in H$ such that the line pq is orthogonal to H. Similarly we want a point q on L such that the line pq is orthogonal to L.

Let's use vectors to solve this problem. Let's assume that H and l contain the origin, so that they are linear subspaces. We first treat the second problem of a line through the origin. In this case the line L is the span of a single vector \vec{u} .

The point p is represented by a vector \vec{y} . The orthogonal projection q is a point of the line L so that there is a scalar α such that the vector corresponding to q is $\vec{y}_0 = \alpha \vec{u}$. What is left over,

$$\vec{y}_1 = \vec{y} - \alpha \vec{u}$$

is orthogonal to \vec{u} . So

$$0 = \vec{y}_1 \cdot \vec{u} = (\vec{y} - \alpha \vec{u}) \cdot \vec{u} = \vec{y} \cdot \vec{u} - \alpha \vec{u} \cdot \vec{u}$$

Thus

$$\alpha = \frac{\vec{y} \cdot \vec{u}}{\vec{u} \cdot \vec{u}}.$$

The orthogonal projection of \vec{y} onto L is then the vector

$$\vec{y}_0 = \operatorname{proj}_L \vec{y} = \frac{\vec{y} \cdot \vec{u}}{\vec{u} \cdot \vec{u}} \vec{u}.$$

Note that this formula is valid in \mathbb{R}^n .

Example 25.1. What is the distance between the point p = (1, -1, 2) and the line L given parametrically as (t, 2t, 3t)?

Let $\vec{y} = (1, -1, 2)$. We want the point q on the line L closest to p. The corresponding vector \vec{y}_0 is a multiple of $\vec{u} = (1, 2, 3)$.

$$\vec{y}_0 = \operatorname{proj}_L \vec{y} = \frac{(1, -1, 2) \cdot (1, 2, 3)}{(1, 2, 3) \cdot (1, 2, 3)} (1, 2, 3) = \frac{5}{14} (1, 2, 3).$$

We want the distance between (1, -1, 2) and $\frac{5}{14}(1, 2, 3)$:

$$\sqrt{\frac{81}{14^2} + \frac{144}{49} + \frac{169}{14^2}} = \sqrt{\frac{125}{2 \cdot 49} + \frac{144}{49}} = \sqrt{\frac{59}{14}}$$

Now let's turn to the first problem, the distance between a point p and a plane H. Suppose that H is the span of two orthogonal vectors \vec{u}_1 and \vec{u}_2 , so that

$$\{\vec{u}_1, \vec{u}_2\}$$

is an orthogonal basis of H.

As before let \vec{y} be the vector corresponding to p and let $\vec{y}_0 \in H$ be the closest vector to \vec{y} . Then $\vec{y}_1 = \vec{y} - \vec{y}_0$ is orthogonal to H, so that it is orthogonal to \vec{u}_1 and \vec{u}_2 .

As $\vec{y}_0 \in H$ and $\{\vec{u}_1, \vec{u}_2\}$ is a basis of H we may find scalars α_1 and α_2 such that

$$\vec{y}_0 = \operatorname{proj}_H \vec{y} = \alpha_1 \vec{u}_1 + \alpha_2 \vec{u}_2.$$

We know that

$$\vec{y}_1 = \vec{y} - \vec{y}_0 = \vec{y} - (\alpha_1 \vec{u}_1 + \alpha_2 \vec{u}_2)$$

is orthogonal to H, that is, it is orthogonal to \vec{u}_1 and \vec{u}_2 . Thus

$$0 = \vec{y}_1 \cdot \vec{u}_1 = (\vec{y} - \alpha_1 \vec{u}_1 - \alpha_2 \vec{u}_2) \cdot \vec{u}_1 = \vec{y} \cdot \vec{u}_1 - \alpha_1 \vec{u}_1 \cdot \vec{u}_1$$

Solving for α_1 we get:

$$\alpha_1 = \frac{\vec{y} \cdot \vec{u}_1}{\vec{u}_1 \cdot \vec{u}_1}$$

The same piece of algebra with the subscript $_2$ replacing the subscript $_1$ yields:

$$\alpha_2 = \frac{\vec{y} \cdot \vec{u}_2}{\vec{u}_2 \cdot \vec{u}_2}.$$

Example 25.2. What is the distance between the point p = (3, 1, 5, 1)and the plane spanned by the vectors $\vec{u}_1 = (3, 1, -1, 1)$ and $\vec{u}_2 = (1, -1, 1, -1)$ in \mathbb{R}^4 ?

We check that \vec{u}_1 and \vec{u}_2 are orthogonal:

$$\vec{u}_1 \cdot \vec{u}_2 = (3, 1, -1, 1) \cdot (1, -1, 1, -1) = 0.$$

So \vec{u}_1 and \vec{u}_2 are orthogonal. We try to write $\vec{y} = (3, 1, 5, 1)$ as a sum $\vec{y}_0 + \vec{y}_1$, where

$$\vec{y}_0 = \operatorname{proj}_H \vec{y} = \alpha_1 \vec{u}_1 + \alpha_2 \vec{u}_2.$$

We have

$$\alpha_1 = \frac{(3,1,5,1) \cdot (3,1,-1,1)}{(3,1,-1,1) \cdot (3,1,-1,1)} = \frac{6}{12} = \frac{1}{2}$$

and

$$\alpha_2 = \frac{(3,1,5,1) \cdot (1,-1,1,-1)}{(1,-1,1,-1) \cdot (1,-1,1,-1)} = \frac{6}{4} = \frac{3}{2}$$

Thus the closest vector to $\vec{y} = (3, 1, 5, 1)$ in H is

$$\vec{y}_0 = \operatorname{proj}_H \vec{y} = \frac{1}{2}(3, 1, -1, 1) + \frac{3}{2}(1, -1, 1, -1) = (3, -1, 1, -1).$$

The distance between p and H is the length of the vector

 $\vec{y}_1 = \vec{y} - \vec{y}_0 = (3, 1, 5, 1) - (3, -1, 1, -1) = (0, 2, 4, 2) = 2(0, 1, 2, 1).$ The distance is

$$2\sqrt{1+4+1} = 2\sqrt{6}.$$

There are general results along these lines whose proofs are simple generalisations of the arguments above:

Definition-Theorem 25.3. If W is a subspace of \mathbb{R}^n and \vec{y} is a vector in \mathbb{R}^n then we may uniquely decompose

$$\vec{y} = \vec{y}_0 + \vec{y}_1$$

where $\vec{y_0} \in W$ and $\vec{y_1}$ is orthogonal to W. $\vec{y_0} = \text{proj}_W \vec{y}$ is called the orthogonal projection of \vec{y} onto W.

If

$$\{\vec{u}_1, \vec{u}_2, \ldots, \vec{u}_k\}$$

is an orthogonal basis of W then

$$\vec{y}_0 = \operatorname{proj}_W \vec{y} = \frac{\vec{y} \cdot \vec{u}_1}{\vec{u}_1 \cdot \vec{u}_1} \vec{u}_1 + \frac{\vec{y} \cdot \vec{u}_2}{\vec{u}_2 \cdot \vec{u}_2} \vec{u}_2 + \dots + \frac{\vec{y} \cdot \vec{u}_n}{\vec{u}_n \cdot \vec{u}_n} \vec{u}_n.$$

Theorem 25.4. If W is a subspace of \mathbb{R}^n and \vec{y} is a vector in \mathbb{R}^n then the orthogonal projection $\vec{y}_0 = \operatorname{proj}_W \vec{y}$ is the closest point in W to \vec{y} , that is,

 $\|\vec{y} - \vec{y_0}\| \le \|\vec{y} - \vec{w}\| \quad \text{for all} \quad \vec{w} \in W,$ with equality if and only if $\vec{w} = \vec{y_0}$.