26. GRAM-SCHMIDT

Gram-Schmidt is an algorithm that starts with any basis $\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_k$ for a linear space $W \subset \mathbb{R}^n$ and ends with an orthogonal basis $\vec{u}_1, \vec{u}_2, \ldots, \vec{u}_k$.

The idea is to construct $\vec{u}_1, \vec{u}_2, \ldots, \vec{u}_k$ step by step.

At the first step we put $\vec{u}_1 = \vec{v}_1$. At the next step we adjust \vec{v}_2 :

$$\vec{u}_2 = \vec{v}_2 - \alpha \vec{u}_1$$

so that it is orthogonal to \vec{u}_1 . We want

$$(\vec{v}_2 - \alpha \vec{u}_1) \cdot \vec{u}_1 = 0$$
 so we choose $\alpha = \frac{\vec{v}_2 \cdot \vec{u}_1}{\vec{u}_1 \cdot \vec{u}_1}.$

At the next step we adjust \vec{v}_3 :

$$\vec{u}_3 = \vec{v}_3 - \beta \vec{u}_1 - \gamma \vec{u}_2,$$

so that is orthogonal to \vec{u}_1 and \vec{u}_2 , and so on.

Example 26.1. Find an orthogonal basis for the plane spanned by $\vec{v}_1 = (3, 0, -1)$ and $\vec{v}_2 = (8, 5, -6)$.

We start with $\vec{u}_1 = (3, 0, -1)$. We adjust \vec{v}_2 so that it is orthogonal to \vec{u}_1 :

$$\vec{u}_2 = \vec{v}_2 - \alpha \vec{u}_1 = (8, 5, -6) - \alpha(3, 0, -1).$$

We set

$$\alpha = \frac{\vec{v}_2 \cdot \vec{u}_1}{\vec{u}_1 \cdot \vec{u}_1} = \frac{(8, 5, -6) \cdot (3, 0, -1)}{(3, 0, -1) \cdot (3, 0, -1)} = \frac{30}{10} = 3$$

So

$$\vec{u}_2 = \vec{v}_2 - \alpha \vec{v}_1 = (8, 5, -6) - 3(3, 0, -1) = (-1, 5, -3).$$

Let's check:

$$\vec{u}_1 \cdot \vec{u}_2 = (3, 0, -1) \cdot (-1, 5, -3) = 0,$$

as expected.

Example 26.2. Find an orthogonal basis for the column space of

$$A = \begin{pmatrix} 3 & -5 & 1\\ 1 & 1 & 1\\ -1 & 5 & -2\\ 3 & -7 & 8 \end{pmatrix}$$

Let $\vec{v}_1 = (3, 1, -1, 3)$, $\vec{v}_2 = (-5, 1, 5, -7)$ and $\vec{v}_3 = (1, 1, -2, 8)$. We apply Gram-Schmidt \vec{v}_1 , \vec{v}_2 and \vec{v}_3 .

We start with $\vec{u}_1 = \vec{v}_1 = (3, 1, -1, 3)$. We adjust \vec{v}_2 so that it is orthogonal to \vec{u}_1 :

$$\vec{u}_2 = \vec{v}_2 - \alpha \vec{u}_1 = (-5, 1, 5, -7) - \alpha(3, 1, -1, 3).$$

We want

$$\alpha = \frac{\vec{v}_2 \cdot \vec{u}_1}{\vec{u}_1 \cdot \vec{u}_1} = \frac{(-5, 1, 5, -7) \cdot (3, 1, -1, 3)}{(3, 1, -1, 3) \cdot (3, 1, -1, 3)} = \frac{-40}{20} = -2$$

 So

$$\vec{u}_2 = (-5, 1, 5, -7) + 2(3, 1, -1, 3) = (1, 3, 3, -1).$$

Let's check:

$$\vec{u}_1 \cdot \vec{u}_2 = (3, 1, -1, 3) \cdot (1, 3, 3, -1) = 0$$

as expected.

Now we adjust \vec{v}_3 so that it is orthogonal to \vec{u}_1 and \vec{u}_2 :

$$\vec{u}_3 = \vec{v}_3 - \beta \vec{u}_1 - \gamma \vec{u}_2 = (1, 1, -2, 8) - \beta (3, 1, -1, 3) - \gamma (1, 3, 3, -1).$$

We want

$$\beta = \frac{\vec{v}_3 \cdot \vec{u}_1}{\vec{u}_1 \cdot \vec{u}_1} = \frac{(1, 1, -2, 8) \cdot (3, 1, -1, 3)}{(3, 1, -1, 3) \cdot (3, 1, -1, 3)} = \frac{30}{20} = \frac{3}{2}$$

and

$$\gamma = \frac{\vec{v}_3 \cdot \vec{u}_2}{\vec{u}_2 \cdot \vec{u}_2} = \frac{(1, 1, -2, 8) \cdot (1, 3, 3, -1)}{(1, 3, 3, -1) \cdot (1, 3, 3, -1)} = \frac{-10}{20} = -\frac{1}{2}$$

 So

$$\vec{u}_3 = \vec{v}_3 - \beta \vec{u}_1 - \gamma \vec{u}_2 = (1, 1, -2, 8) - \frac{3}{2}(3, 1, -1, 3) + \frac{1}{2}(1, 3, 3, -1) = (-3, 1, 1, 3) - \frac{3}{2}(3, 1, -1, 3) + \frac{1}{2}(1, 3, 3, -1) = (-3, 1, 1, 3) - \frac{3}{2}(3, 1, -1, 3) - \frac$$

Let's check:

$$\vec{u}_1 \cdot \vec{u}_3 = (3, 1, -1, 3) \cdot (-3, 1, 1, 3) = 0$$

and

$$\vec{u}_2 \cdot \vec{u}_3 = (1, 3, 3, -1) \cdot (-3, 1, 1, 3) = 0$$

as expected.

Note that we can refine the orthogonal basis \vec{u}_1 , \vec{u}_2 and \vec{u}_3 to an orthonormal basis, simply by dividing through by the length, $\sqrt{20} = 2\sqrt{5}$.