26. Gram-Schmidt

Gram-Schmidt is an algorithm that starts with any basis $\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{k}$ for a linear space $W \subset \mathbb{R}^{n}$ and ends with an orthogonal basis $\vec{u}_{1}, \vec{u}_{2}, \ldots, \vec{u}_{k}$.

The idea is to construct $\vec{u}_{1}, \vec{u}_{2}, \ldots, \vec{u}_{k}$ step by step.
At the first step we put $\vec{u}_{1}=\vec{v}_{1}$. At the next step we adjust \vec{v}_{2} :

$$
\vec{u}_{2}=\vec{v}_{2}-\alpha \vec{u}_{1}
$$

so that it is orthogonal to \vec{u}_{1}. We want

$$
\left(\vec{v}_{2}-\alpha \vec{u}_{1}\right) \cdot \vec{u}_{1}=0 \quad \text { so we choose } \quad \alpha=\frac{\vec{v}_{2} \cdot \vec{u}_{1}}{\vec{u}_{1} \cdot \vec{u}_{1}} .
$$

At the next step we adjust \vec{v}_{3} :

$$
\vec{u}_{3}=\vec{v}_{3}-\beta \vec{u}_{1}-\gamma \vec{u}_{2},
$$

so that is orthogonal to \vec{u}_{1} and \vec{u}_{2}, and so on.
Example 26.1. Find an orthogonal basis for the plane spanned by $\vec{v}_{1}=(3,0,-1)$ and $\vec{v}_{2}=(8,5,-6)$.

We start with $\vec{u}_{1}=(3,0,-1)$. We adjust \vec{v}_{2} so that it is orthogonal to \vec{u}_{1} :

$$
\vec{u}_{2}=\vec{v}_{2}-\alpha \vec{u}_{1}=(8,5,-6)-\alpha(3,0,-1) .
$$

We set

$$
\alpha=\frac{\vec{v}_{2} \cdot \vec{u}_{1}}{\vec{u}_{1} \cdot \vec{u}_{1}}=\frac{(8,5,-6) \cdot(3,0,-1)}{(3,0,-1) \cdot(3,0,-1)}=\frac{30}{10}=3 .
$$

So

$$
\vec{u}_{2}=\vec{v}_{2}-\alpha \vec{v}_{1}=(8,5,-6)-3(3,0,-1)=(-1,5,-3) .
$$

Let's check:

$$
\vec{u}_{1} \cdot \vec{u}_{2}=(3,0,-1) \cdot(-1,5,-3)=0
$$

as expected.
Example 26.2. Find an orthogonal basis for the column space of

$$
A=\left(\begin{array}{ccc}
3 & -5 & 1 \\
1 & 1 & 1 \\
-1 & 5 & -2 \\
3 & -7 & 8
\end{array}\right)
$$

Let $\vec{v}_{1}=(3,1,-1,3), \vec{v}_{2}=(-5,1,5,-7)$ and $\vec{v}_{3}=(1,1,-2,8)$.
We apply Gram-Schmidt \vec{v}_{1}, \vec{v}_{2} and \vec{v}_{3}.
We start with $\vec{u}_{1}=\vec{v}_{1}=(3,1,-1,3)$. We adjust \vec{v}_{2} so that it is orthogonal to \vec{u}_{1} :

$$
\vec{u}_{2}=\vec{v}_{2}-\alpha \vec{u}_{1}=(-5, \underset{1}{1,5,-7)-\alpha(3,1,-1,3) .}
$$

We want

$$
\alpha=\frac{\vec{v}_{2} \cdot \vec{u}_{1}}{\vec{u}_{1} \cdot \vec{u}_{1}}=\frac{(-5,1,5,-7) \cdot(3,1,-1,3)}{(3,1,-1,3) \cdot(3,1,-1,3)}=\frac{-40}{20}=-2 .
$$

So

$$
\vec{u}_{2}=(-5,1,5,-7)+2(3,1,-1,3)=(1,3,3,-1) .
$$

Let's check:

$$
\vec{u}_{1} \cdot \vec{u}_{2}=(3,1,-1,3) \cdot(1,3,3,-1)=0
$$

as expected.
Now we adjust \vec{v}_{3} so that it is orthogonal to \vec{u}_{1} and \vec{u}_{2} :

$$
\vec{u}_{3}=\vec{v}_{3}-\beta \vec{u}_{1}-\gamma \vec{u}_{2}=(1,1,-2,8)-\beta(3,1,-1,3)-\gamma(1,3,3,-1) .
$$

We want

$$
\beta=\frac{\vec{v}_{3} \cdot \vec{u}_{1}}{\vec{u}_{1} \cdot \vec{u}_{1}}=\frac{(1,1,-2,8) \cdot(3,1,-1,3)}{(3,1,-1,3) \cdot(3,1,-1,3)}=\frac{30}{20}=\frac{3}{2} .
$$

and

$$
\gamma=\frac{\vec{v}_{3} \cdot \vec{u}_{2}}{\vec{u}_{2} \cdot \vec{u}_{2}}=\frac{(1,1,-2,8) \cdot(1,3,3,-1)}{(1,3,3,-1) \cdot(1,3,3,-1)}=\frac{-10}{20}=-\frac{1}{2} .
$$

So
$\vec{u}_{3}=\vec{v}_{3}-\beta \vec{u}_{1}-\gamma \vec{u}_{2}=(1,1,-2,8)-\frac{3}{2}(3,1,-1,3)+\frac{1}{2}(1,3,3,-1)=(-3,1,1,3)$.
Let's check:

$$
\vec{u}_{1} \cdot \vec{u}_{3}=(3,1,-1,3) \cdot(-3,1,1,3)=0
$$

and

$$
\vec{u}_{2} \cdot \vec{u}_{3}=(1,3,3,-1) \cdot(-3,1,1,3)=0
$$

as expected.
Note that we can refine the orthogonal basis \vec{u}_{1}, \vec{u}_{2} and \vec{u}_{3} to an orthonormal basis, simply by dividing through by the length, $\sqrt{20}=$ $2 \sqrt{5}$.

