27. Least Squares

Consider a system of equations

$$
A \vec{x}=\vec{b}
$$

which is overdetermined, that is, the number of equations is more than the number of variables, $m>n$. For most \vec{b} there won't be a solution. Often this is because of noise, meaning that the data is not quite correct. In this case we expect that there is a point \vec{b}_{0} very close to \vec{b} for which we can solve the equations.

How to choose \vec{b}_{0} ? Well the set of all vectors \vec{b}_{0} for which there is a solution is the column space $\operatorname{Col}(A)$. So let's choose the closest point \vec{b}_{0} to \vec{b} in the column space.

Definition 27.1. Let A be an $m \times n$ matrix.
The least squares solution to $A \vec{x}=\vec{b}$ is a vector \vec{x}_{0} such that

$$
\left\|\vec{b}-A \vec{x}_{0}\right\| \leq\|\vec{b}-A \vec{x}\| \quad \text { for all } \quad x \in \mathbb{R}^{n}
$$

We will see two methods to find \vec{x}_{0}.
Method \#1
Example 27.2. Find a least squares solution to the equation $A \vec{x}=\vec{b}$, where

$$
A=\left(\begin{array}{cc}
1 & 5 \\
3 & 1 \\
-2 & 4
\end{array}\right) \quad \text { and } \quad \vec{b}=\left(\begin{array}{c}
4 \\
-2 \\
-3
\end{array}\right)
$$

Let $\vec{u}_{1}=(1,3,-2)$ and $\vec{u}_{2}=(5,1,4)$. We want the closest point \vec{b}_{0} to the column space of A, we want the orthogonal projection of \vec{b} onto the column space W, the span of \vec{u}_{1} and $\vec{u}_{2}, \operatorname{proj}_{W} \vec{b}$.

Note that

$$
\vec{u}_{1} \cdot \vec{u}_{2}=(1,3,-2) \cdot(5,1,4)=0,
$$

so that \vec{u}_{1} and \vec{u}_{2} are orthogonal. So finding $\operatorname{proj}_{W} \vec{b}$ is straightforward, if we write

$$
\vec{b}_{0}=\alpha_{1} \vec{u}_{1}+\alpha_{2} \vec{u}_{2},
$$

then

$$
\alpha_{1}=\frac{\vec{b} \cdot \vec{u}_{1}}{\vec{u}_{1} \cdot \vec{u}_{1}}=\frac{(4,-2,-3) \cdot(1,3,-2)}{(1,3,-2) \cdot(1,3,-2)}=\frac{4}{14}=\frac{2}{7},
$$

and

$$
\alpha_{2}=\frac{\vec{b} \cdot \vec{u}_{2}}{\vec{u}_{2} \cdot \vec{u}_{2}}=\frac{(4,-2,-3) \cdot(5,1,4)}{(5,1,4) \cdot(5,1,4)}=\frac{6}{42}=\frac{1}{7}
$$

Therefore

$$
\vec{b}_{0}=\frac{2}{7}(1,3,-2)+\frac{1}{7}(5,1,4)=(1,1,0) .
$$

Note we already know how to solve

$$
A \vec{x}=\vec{b}_{0}
$$

The solution is

$$
\vec{x}_{0}=\frac{1}{7}(2,1) .
$$

What do we do if the columns of A are not orthogonal? We could apply Gram-Schmidt but unfortunately this is quite expensive, that is, it takes quite a bit of time to find an orthogonal basis of $\operatorname{Col}(A)$.

Method \#2
We know that the vector

$$
\vec{b}_{1}=\vec{b}-\vec{b}_{0}
$$

is orthogonal to the column space of A. But we already saw that

$$
\operatorname{Col}(A)^{T}=\operatorname{Nul}\left(A^{T}\right)
$$

Hence

$$
\vec{b}-\vec{b}_{0} \in \operatorname{Nul}\left(A^{T}\right)
$$

that is,

$$
A^{T}\left(\vec{b}-\vec{b}_{0}\right)=\overrightarrow{0}
$$

Suppose that \vec{x}_{0} is a solution of

$$
A \vec{x}=\vec{b}_{0} \quad \text { so that } \quad A \vec{x}_{0}=\vec{b}_{0}
$$

Then

$$
A^{T}\left(\vec{b}-A \vec{x}_{0}\right)=\overrightarrow{0} .
$$

Rearranging we get
Theorem 27.3. \vec{x} is a least squares solution of $A \vec{x}=\vec{b}$ if and only if \vec{x} is a solution of

$$
A^{T} A \vec{x}=A^{T} \vec{b}
$$

Let's solve (27.2) again, using the second method.
Example 27.4. Find a least squares solution to the equation $A \vec{x}=\vec{b}$, where

$$
A=\left(\begin{array}{cc}
1 & 5 \\
3 & 1 \\
-2 & 4
\end{array}\right) \quad \text { and } \quad \vec{b}=\left(\begin{array}{c}
4 \\
-2 \\
-3
\end{array}\right)
$$

$$
A^{T}=\left(\begin{array}{ccc}
1 & 3 & -2 \\
5 & 1 & 4
\end{array}\right)
$$

So

$$
A^{T} A=\left(\begin{array}{ccc}
1 & 3 & -2 \\
5 & 1 & 4
\end{array}\right)\left(\begin{array}{cc}
1 & 5 \\
3 & 1 \\
-2 & 4
\end{array}\right)=\left(\begin{array}{cc}
14 & 0 \\
0 & 42
\end{array}\right)
$$

and

$$
A^{T} \vec{b}=\left(\begin{array}{ccc}
1 & 3 & -2 \\
5 & 1 & 4
\end{array}\right)\left(\begin{array}{c}
4 \\
-2 \\
-3
\end{array}\right)=\binom{4}{6}
$$

We are supposed to solve

$$
\left(\begin{array}{cc}
14 & 0 \\
0 & 42
\end{array}\right)\binom{x}{y}=\binom{4}{6}
$$

which has the unique solution

$$
(x, y)=(2 / 7,1 / 7)
$$

as expected.
Example 27.5. Find the least squares solutions to the equation $A \vec{x}=$ \vec{b}, where

$$
\begin{gathered}
A=\left(\begin{array}{lll}
1 & 1 & 0 \\
1 & 1 & 0 \\
1 & 0 & 1 \\
1 & 0 & 1
\end{array}\right) \quad \text { and } \quad \vec{b}=\left(\begin{array}{l}
1 \\
3 \\
8 \\
2
\end{array}\right) . \\
A^{T}=\left(\begin{array}{llll}
1 & 1 & 1 & 1 \\
1 & 1 & 0 & 0 \\
0 & 0 & 1 & 1
\end{array}\right)
\end{gathered}
$$

So

$$
A^{T} A=\left(\begin{array}{llll}
1 & 1 & 1 & 1 \\
1 & 1 & 0 & 0 \\
0 & 0 & 1 & 1
\end{array}\right)\left(\begin{array}{lll}
1 & 1 & 0 \\
1 & 1 & 0 \\
1 & 0 & 1 \\
1 & 0 & 1
\end{array}\right)=\left(\begin{array}{lll}
4 & 2 & 2 \\
2 & 2 & 0 \\
2 & 0 & 2
\end{array}\right)
$$

and

$$
A^{T} \vec{b}=\left(\begin{array}{cccc}
1 & 1 & 1 & 1 \\
1 & 1 & 0 & 0 \\
0 & 0 & 1 & 1
\end{array}\right)\left(\begin{array}{l}
1 \\
3 \\
8 \\
2
\end{array}\right)=\left(\begin{array}{c}
14 \\
4 \\
10
\end{array}\right)
$$

We are supposed to solve

$$
\left(\begin{array}{lll}
4 & 2 & 2 \\
2 & 2 & 0 \\
2 & 0 & 2
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{c}
14 \\
4 \\
10
\end{array}\right)
$$

We apply Gaussian elimination:

$$
\left(\begin{array}{lll|c}
4 & 2 & 2 & 14 \\
2 & 2 & 0 & 4 \\
2 & 0 & 2 & 10
\end{array}\right) \rightarrow\left(\begin{array}{lll|l}
2 & 1 & 1 & 7 \\
1 & 1 & 0 & 2 \\
1 & 0 & 1 & 5
\end{array}\right) \rightarrow\left(\begin{array}{lll|l}
1 & 0 & 1 & 5 \\
1 & 1 & 0 & 2 \\
2 & 1 & 1 & 7
\end{array}\right)
$$

so that

$$
\rightarrow\left(\begin{array}{ccc|c}
1 & 0 & 1 & 5 \\
0 & 1 & -1 & -3 \\
0 & 1 & -1 & -3
\end{array}\right) \rightarrow\left(\begin{array}{ccc|c}
1 & 0 & 1 & 5 \\
0 & 1 & -1 & -3 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

x and y are basic variables and z is a free variable.

$$
y-z=-3 \quad \text { so that } \quad y=-3+z .
$$

Therefore

$$
x+z=5 \quad \text { so that } \quad y=5-z
$$

The general solution is

$$
(x, y, z)=(5-z,-3+z, z)=(5,-3,0)+z(-1,1,1) .
$$

